## 特集・アスファルト舗装に関する試験調査法

<table>
<thead>
<tr>
<th>項目</th>
<th>作者</th>
<th>頁數</th>
</tr>
</thead>
<tbody>
<tr>
<td>特集にあたって</td>
<td>川島義昭</td>
<td>2</td>
</tr>
<tr>
<td>たわみ測定試験</td>
<td>野上幸治・内山鏡二郎</td>
<td>4</td>
</tr>
<tr>
<td>ホイールトラッキング試験方法</td>
<td>野上幸治・小島逸平</td>
<td>13</td>
</tr>
<tr>
<td>わたち掘れ測定</td>
<td>野上幸治・高橋哲躬</td>
<td>21</td>
</tr>
<tr>
<td>ひび割れ測定</td>
<td>野上幸治・高橋哲躬</td>
<td>26</td>
</tr>
<tr>
<td>アスファルトの回収試験</td>
<td>野上幸治・荒井孝雄</td>
<td>32</td>
</tr>
<tr>
<td>平坦性試験</td>
<td>野上幸治・宮 洋光</td>
<td>40</td>
</tr>
<tr>
<td>アスファルトの品質試験</td>
<td>伊藤正秀</td>
<td>47</td>
</tr>
</tbody>
</table>

〜各国の品質試験と供用性について〜

アスファルト舗装技術研究グループ・第22回研究報告

### 大型貨物自動車のインパクト

〜OECDレポートより〜

＜工事務所長シリーズ・その28＞

瀬戸大橋と岡山県の幹線道路網

＜用語の解説＞

ダイナフレクトたわみ量

油分離とステインインデックス・オリエンシテスト

総目次 第28巻 第143〜146号（昭和60年度）

＜統計資料＞石油アスファルト需給統計資料

第53回アスファルトセミナール開催予告 (61.6.20新潟市)
第58回アスファルトゼミナール
会員研修会

標記研修会を下記により開催することになりました。多数のご参加をお願い申し上げます。

1. 日時：昭和61年6月20日（金）

2. 開催場所：新潟市「ニュー越路」
   ☎950 新潟市明石1-1-7 ☎0252-45-8271

3. 講演題目：
   Ⅰ 国際石油情勢の現状と今後の課題
       ～原油価格と需給～
       置日本エネルギー経済研究所経済研究部研究主幹 田中紀夫氏
   Ⅱ 我国の石油精製業の現状と今後の課題
       通産省資源エネルギー庁石油部精製課課長 高橋光男氏
       13:00〜14:30

4. 申し込み方法：
   下記の申込書に記入のうえ参加費1名あたり2,000円を添えて現金書留にて、置日本
   アスファルト協会会員研修会係宛までご送付下さい、折り返し領収書と受講証を送付
   いたしますので、当日受付までご持参下さい。
   送付先 ☎105 東京都港区虎ノ門2-6-7和恵第10ビル（☎03-502-3956）
   なお、申し込みは定員（130名）になりしだい締め切らせていただきます。

5. 申し込み期限：昭和61年6月10日（火）

会員研修会参加申込書

参加者代表者名：
勤務先住所（〒 ）

<table>
<thead>
<tr>
<th>会社名</th>
<th>所属</th>
<th>氏名</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

合計：人申し込みます。
特集にあたって

川島 弘 昭 *
前日本道路公団試験所 製品試験室長

一方、最近の測定技術の進歩に伴い、アスファルト舗装に関する試験試験方法も新しい手法が開発され実用化されるに至っており、そのなかでも特に重要度の高いものとして、舗装体および舗装路面の使用期評価に関する調査試験を今回の特集としてとりあげてみた。

そこでとりあげた調査試験項目の各々について、その問題点について簡単にのべてみたい。
① たわみ量测定試験

twam量測定については、測定法そのものの問題より測定に用いる荷重車に関する問題が大きい。すなわち、測定に用いる8 tonシングル軸トラックの確保が困難となっているため、現場で入手が容易な10tonスタンド軸トラックによる測定方法の検討が必要となっている。

そこで、現在広く用いられているベンケルマンビームによるたわみ量測定に基づいて、異なる荷重車による比較試験を実施しその分析を行った結果、スタンド軸によるたわみ量測定から得られる弾性変形量からシングル軸での最大変形量に換算することが可能であることが判明したため、その測定試験方法を提案している。

② ホイールトラッキング試験

ホイールトラッキング試験は、舗装の耐久性を評価する試験として有効なものといわれ、近年急速に普及している試験方法である。しかしその試験方法の細部には整理統一すべき点がまだ多く、その条件等について検討する必要がある。

わが国での荷重車によるホイールトラッキング試験機は、現在のところ約100台程度であり、その仕様、機構にはかなりの違いがあるようである。そのため、まず試体の作製方法を統一する意味でローラコンパクタによる締め固めを行うこと、試験荷重は総荷重によって規定すると、試験箱のゴム硬度は、常温と試験温度で管理することなどの条件を規定している。

③ たわみ量およびひびわれ測定

舗装の管理を合理的かつ経済的に行うためには、舗装面の凹凸状態を的確に把握しておく必要がある。このように考えると、たわみ量およびひび割れ測定は、その
需要が近年急激に増加している。しかし、その利用法にはまだ問題が多く、得られた測定結果を舗装の維持修繕に十分反映しているとは言い難い。そこで、これら測定結果の利用法を中心として検討を進める必要がある。

現在行われているわだ懸測定方法のうち、測定方法には基本的に問題がないことが判明し、問題は、その得られたデータの利用方法であることが明らかとなった。そのため、いざの測定方法であっても、得られたデータを修繕計画に反映するための評価方法を中心に提案を行うとともに、わだ懸測定の2、3の方法を紹介している。

一方、びび割れ測定に関しては種々の方法があるが、まずそのびび割れの測定結果が直接舗装の維持修繕に反映されていないことを指摘し、びび割れ調査の運用法、びび割れの定量化手法およびびび割れ原因の把握の問題を浮き彫りにしている。びび割れの調査測定には、大別して目視によるものの、測定器によるものおよびサンプリング調査があるが、これらは維持管理の各段階で適切に用いるべきであるので、その適用の流れを示すとともに、現在、目視によるびび割れの測定方法には適当なものがみあたらないことから、その方法を明確に提案している。

4 アスファルトの回収試験

近年、アスファルト舗装のリサイクルの普及などによりアスファルトの回収試験の必要性は急増していると言えよう。現在わが国で行われている回収試験は、米国で適用されているASTM D-1866のアブゾン法を基本としたものであるが、その手順、使用器具などは統一を著しく欠いている。そこで試験の行なわざわし基本的かつ重要なことは整理、統一しておく必要がある。

そのためにまず、アスファルトの回収試験に関して、米国のASTMおよび国内の現状を調査し、そのうえで標準試験方法を設定して共通試験を実施している。

現在のASTMに示されているアブゾン回収試験方法は、わが国に導入された時点のものに比べ随所を改訂して実施されており、その主なものは抽出および蒸留におけるアスファルトの劣化を意識したための新たな手法および器具を採用したことにと指摘している。

現在、わが国で行われているアスファルトの回収試験はアスファルト混合物試料のかきほぐし、アスファルトの抽出および蒸留の各試験および、実施機関によって相当の差違があること、さらに使用器具も著しく統一性を欠いていることである。そのために実施したアスファルト回収の共通試験から、針入度試験そのものにバラツキがあることがわかったが、それを補正した後の針入度の変動係数は10%以内となることが期待でき、標準試験法の設定が可能であることが明らかとなったことから、統一試験方法の提案を行っている。

5 平坦性試験

平坦性試験方法には種々があるが、特に高速道路における平坦性試験は、8mプロフィルメータによる方法である。しかしながら、この8mプロフィルメータによる方法は維持修繕工事への適用を考えた場合、安全性などの面から非常に問題があり、現在国道等の維修工事で使用されている3mプロフィルメータを用いる方法についてその適用が必要があることが提起され検討を加えている。

平坦性試験に関しては、これまでわが国においては3mプロフィルメータが多く用いられており、一部の高速道路において建設時の平坦性評価として8mプロフィルメータが用いられているのが現状である。

検討事項の一つとして、3mプロフィルメータのσと8mプロフィルメータのσの相関関係を検討した結果、換算することは適当ではないことが明らかとなった。また、種々の手法で測定されている3mプロフィルメータによる平坦性試験値の補正を行っている。

6 アスファルト品質試験

アスファルト品質試験の目的は、アスファルトそのものに要求される品質規格とアスファルト混合物を舗装体とした際、気象条件や交通条件に対して生ずる種々の現象をバイオドの性状に照らして評価することにある。このことは、アスファルト舗装の供用性と品質試験各項目の対応を明確にするとともにアスファルトの品質試験各項目ごとの試験法の位置づけおよび規格値の検討を行う必要に迫られているということである。

今回は、アスファルトの品質の現状を掴み、各試験項目ごとにおける対応について述べるとともにアスファルトの品質に必要となる規格の検討を行っている。

舗装の試験調査方法は、材料に関するものから建設された舗装の供用性に関するものまで多岐にわたっており、その項目も非常に多い。またこれらの試験はそれぞれの時代の要求を背景として個々に進歩するものである。この特筆が舗装の維持管理のうえで貴重な資料となるものと確信するものである。
たわみ測定試験

野上幸治・内山鏡二郎

1. まえがき
日本道路公団では、ベンケルマンビームによるたわみ測定試験を路床・路盤の管理試験およびアスファルト舗装の構造的健全度の評価の一手法として多用している。

ベンケルマンビームによるたわみ測定には、従来、温度ならびに荷重補正、ビームの沈下および測定器の規格化などの問題が指摘されている。また、最近ではこれらの問題のほか、測定に使用する荷重車の確保が問題となってきている。すなわち、現試験法に規定された荷重車である8tのシングル軸トラック（以下シングル車という）の入手が、近年のダンプトラックの大型化に伴ない極めて困難となってきている。このため、現場で入手しやすい10tダンプ車ダンプトラック（以下ダンプ車という）を荷重車とした時の試験法について検討する必要は極めて高いと言える。

本報文では、たわみ測定試験の現状等を種々の文献から明らかにしたうえ、主に路床・路盤の管理試験に用いることを前提としたベンケルマンビーム法のダンプ車による測定法に関する検討を行なう。

2. たわみ測定装置の概要
ここでは現在用いられている種々のたわみ測定装置の概要を各種文献に基づき整理してみる。

(1) ベンケルマンビーム
ベンケルマンビームは1953年にアメリカのA.C. Benkelmanによって開発された、測定装置は図-1に示す簡便なものである。測定は、規定の輪荷重とタイヤ空気圧に調整されたダンプトラックの測定輪を測定位置に止め、ビーム先端をダブルタイヤの中央に差込む。次にトラックを約2km/hの速度で動かしたときのビーム先端の動きを、手元にあるダイヤルゲージで読み取り、その値に倍率（2倍）をかけてたわみ量が求められる。

なお、この方法には普通たわみ法と復元たわみ法があり、前者は最大変形量を、後者は弾性変形量をたわみ量として与える。

(2) デフレクトグラフ（ラクロア）
デフレクトグラフは、1963年にフランスの中央土木研究所で開発された装置で、その外観は写真-1に示したとおりである。この装置は、車体下部に組み込んだ測定
ダイナフレクト

ダイナフレクトは米国において開発された装置で、その外観は写真－3に示したとおりである。この装置はトーラー型で、動荷重発生装置、センサー（たわみ検出装置）と牽引車の中の制御ならびに測定装置より構成され、全ての測定操作は牽引車の運転席で行うことができる。測定はトーラーの自重（725 kg）を中心に振幅約225 kg（2.2 KN）、振動数8 Hzの正弦波の動荷重を剛性的2つの車輪に与え、30cm間隔に配置された5つのセンサーによって荷重度を検出する。この振動度は、測定装置でアナログ情報がどれをよりたわみ量に変換され、約450 kg（4.4 KN）の荷重に対応したたわみ量として記録に表される。

測定結果はたわみ量とたわみ曲線で表わし、種々の指標による舗装の評価に用いられている。

サンバー（Thumper）は米国連邦道路局によって開発された装置で、その外観は写真－4に示したとおりである。この装置には走行幅4mのバンに直線可変差動式（LVDI），たわみ測定機を有する基準フレーム，油圧系，熱気圧系，電子系のユニットが組込まれ，技術者1人で運転台近くの制御盤からすべて操作できる。
測定は基準フレームを路面に固定し、荷重板から最大4,080 kg（40kN）、周期0.1～110 Hzまでの振動荷重を路面に与え、たわみ測定部からたわみ量を検出するこ
とにより行う。測定結果はオシログラフおよびアナロ
グ磁気テープ記録記に記録する。

この装置は、各種の周期の動荷重のもとで動的たわみ
を測定するだけでなく、たわみ量を線形分布でとらえ、
たわみの時間経過を記録し、リバウンド率を測定し、永
久たわみ量を測定することができる。なお、この装置は
未だ日本には導入されていない。

(5) フォーリングウェイトデフレクトメータ(FWD)

FWDは、写真-5 に示す車引型で、荷重装置、検出装
置および記録装置などから構成された装置である。この
装置による測定は、検出装置を路面に固定し、重りを落
下（最大5ton（49kN）の荷重）させ、検出装置によっ
て荷重面の中心の他任意の2ケ所のたわみを計測するこ
とによって行う。測定結果は、荷重の大きさ、3点の
たわみ量をデジタル量で得られ、データをハンディコンピ
ュータに蓄積し、調査作業データとともにフロッピーデ
ィスクに入り、データ処理、種々の項目で検査す
ることができる。

3. ベンケルマンビーム法の問題点

ベンケルマンビームによるたわみ測定法は、前述のよ
うに種々の問題点が指摘されているが、このうち荷重
に関するもの以外については種々の研究がなされ、それ
ぞれの対策が提案されている。そこで、ここでは
荷重版に関する問題を中心に検討を進める。

3-1 荷重板の推移

図-2 は、財団法人自動車検査登録協会新発行の「諸
分類別自動車保有車両数」の資料から、シングル車にお
よびタンデム車の登録台数の推移を示したものである。

写真-5 フォーリングウェイトデフレクトメータ

この図から、シングル車は昭和50年3月現在、タンデ
ム車の1/10以下であり、昭和54年以降の前年度登録台
数が17〜18%減少していることがわかる。このような推
移から、今後も深い測定試験の荷重車であるシングル車
の使用は、現在よりも増して困難な状況に向けられと考え
られる。したがって、現在、今後とも入水が容易なタン
デム車を荷重車として使用した試験法の検討を急ぐ必要
がある。

3-2 タンデム車

(1) 諸 元

タンデム車は車両前部が後部車と後々車の2軸になっ
ており、後前車だけが駆動する1軸駆動と後前軸および
後々車の2軸共駆動する2軸駆動車の2車種がある。1軸
駆動のタンデム車は後前軸と後々車の荷重車が大きい
（最大荷重車のために継続4ton）が、2軸駆動では後前軸およ
び後々車にかかる荷重がばらつきがほんと均等になっている。表
-1 はタンデムタック製造会社4社の代表的なタンデム
車を抽出し、最大荷重車における後前軸と後々軸にかか
る荷重を示したものである。表によれば、タンデム車の
荷重車の重量により測定に使用する後軸の荷重が5.2t〜9.5t と
異なっていることがわかる。

したがって、タンデム車を荷重車として使用する場合
には、その機種の統一が必要となろう。
表 1 10 t ダンプ最大積載量時における各軸にかかる荷重（単位：kg）

<table>
<thead>
<tr>
<th>軸の区分</th>
<th>前軸</th>
<th>後軸</th>
<th>後前軸</th>
<th>後後軸</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>一軸</td>
<td>5.135</td>
<td>9.405</td>
<td>5.215</td>
<td>三菱 K—FU313JD (9.755 kg)</td>
<td></td>
</tr>
<tr>
<td>駆動</td>
<td>4.875</td>
<td>9.405</td>
<td>5.390</td>
<td>日本 K—FR270AD (9.670 kg)</td>
<td></td>
</tr>
<tr>
<td>二軸</td>
<td>5.110</td>
<td>9.460</td>
<td>5.275</td>
<td>いすゞ K—SSM451D (19.845 kg)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5.050</td>
<td>9.465</td>
<td>5.250</td>
<td>日産 K—CD52HD (9.765 kg)</td>
<td></td>
</tr>
<tr>
<td>三軸</td>
<td>5.010</td>
<td>7.470</td>
<td>7.365</td>
<td>三菱 K—FV313JD (19.550 kg)</td>
<td></td>
</tr>
<tr>
<td>駆動</td>
<td>4.790</td>
<td>7.545</td>
<td>7.435</td>
<td>日本 K—FS270AD (19.770 kg)</td>
<td></td>
</tr>
<tr>
<td>四軸</td>
<td>5.135</td>
<td>7.390</td>
<td>7.290</td>
<td>いすゞ K—SSZ451D (19.815 kg)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.895</td>
<td>7.500</td>
<td>7.355</td>
<td>日産 K—CWS2HD (19.775 kg)</td>
<td></td>
</tr>
</tbody>
</table>

(注) 備考欄の（ ）内の数値は最大積載量時を含む重量を示す。

(2) 複輪荷重

タンデム車によるたわみ測定試験では、路面で 5 t 路盤面上高さを 8 t の複輪荷重を使用している。これらの同様の複輪荷重をタンデム車で確保しようとした場合、タンデム車では前軸と後輪の 2 軸に積載荷重が分散されるため、シングル車に比較しより多くの積載量が必要となる。特に路盤面以上に用いる 8 t の複輪荷重を得るためには、43t ～ 50t という積載量が必要となり、道路交通法などに照らすと、極めて問題がなさだしいと言える。

タンデム車の荷重は佐藤 11) によれば、荷を水平に積むことにより、前軸および後輪の荷重が均等に分布するが、積荷が水平である場合には前軸と後輪の荷重の同一設定が困難である。このことからタンデム車の場合、後輪 2 軸にある各車軸荷重がたわみ量に直接影響することを考えれば、輪荷重を一定にできる水平積みが望ましいと言える。

また、佐藤は積荷の高さと軸荷重について図 3 を示している。図中で砂および砕石の単位体積重量は 1.46 t/m³ 、1.86 t/m³ 、三菱 K—FU13JD で、積荷の高さと軸荷重の関係が直線関係にあると仮定すれば、5 t 輪荷重にするための高さを砂で 88 cm 、砕石で 88 cm 、8 t 輪荷重にするための高さを砂で 163 cm 、砕石で 126 cm となる。一般にタンデム車の荷重の高さは、60 cm 程度であることから、タンデム車による 8 t 輪荷重のたわみ量は 11) および 12) の図 4 に示している。

図 4 2 軸車とタンデム車のたわみ量の関係

重のたわみ量実験は不可能といえよう。

以上の結果から、ペンケルマンビーム法に荷重車を導入する場合においては、複輪荷重の設定に関連して積荷の積載方法および荷重の調整方法などがある。

4. タンデム車によるたわみ測定方法の検討

4-1 文献等による検討

アスファルト舗装の表面におけるタンデム車とシングル車の最大たわみ量の関係は、内田 11) が図 4 の測定結果を示している。図中の補正たわみ量はビーム脚の沈下を考慮し、式 (1) で補正した値とし、理論たわみ量は多層積載理論（BISAR）を使用して計算している。

$$Z_L = 2.76 Z(t + 265) - 1.76 Z(t + 415) + 2.8 t$$

(1)
ここで、

\( Z_\ell \): 荷重中心がブループから \( \ell \) cm 離れた場合のブループ接地点の実際のたわみ量

\( Z(\ell + 265) \): 荷重中心がブループから \( \ell \) cm 離れた場合の前脚の実際の沈下量

\( Z(\ell + 415) \): 荷重中心がブループから \( \ell \) cm 離れた場合の後脚の実際の沈下量

\( d_t \): ダイサルゲージまたは自記録の読み

(注) ブループとはビームの先端をいう。

図から、実測のたわみ量を抽出し、ダンデム車とシングル車の関係をみると、式(2)の相関式が推測される。

\[ y = 1.009 x + 11.59 \quad \text{(n=8)} \]

ここに、

\[ r = 0.81 \]

\[ y \]: シングル車のたわみ量

\[ x \]: ダンデム車のたわみ量

しかし、理論的にはダンデム車の輪荷重5 tによるたわみ量の0.6倍がシングル車の輪荷重5 tのたわみ量になるとされている。

また、佐藤11は等荷重車柵荷重（ESWL）の方法をもとに計算し、シングル車5 t転換重に相当するダンデム車の輪荷重4.4 tであることとしている。

一方、道路公団興行所では間越自動車道（前橋〜新川間）の工事用道路の一部に試験道路を設け、アスファルト舗装の表面層におけるダンデム車とシングル車のたわみ測定比較試験を実施し、その結果を上島12が報告している。

この試験では広範囲にわたるたわみ量が分布するように16種類の舗装断面（ただし、表層士：5 cm、アスファルト安定処理まで含めたアスファルト層は5〜20 cm）を建設し、KODAI10ベンチマルビームによるたわみ測定試験の実験記録を収集し、下記の条件で実施している。

シングル車 ダンデム車

<table>
<thead>
<tr>
<th>輪荷重</th>
<th>5 t</th>
<th>5 t, 4 t</th>
</tr>
</thead>
<tbody>
<tr>
<td>空気圧</td>
<td>7 kg/cm²</td>
<td>7 kg/cm²</td>
</tr>
<tr>
<td>(0.69 Mpa)</td>
<td>(0.69 Mpa)</td>
<td></td>
</tr>
</tbody>
</table>

図-5 は、シングル車の輪荷重5 tによるたわみ量（\( d_s \)）とダンデム車の輪荷重5 tによるたわみ量（\( d_t \)）の関係を示したもので、回帰式は、

\[ d_s = 0.807 d_t - 0.031 \quad \text{(r = 0.96)} \]

が得られ、両者には高い相関性がある。この結果から、ダンデム車の輪荷重5 tにおけるたわみ量の0.8倍がシングル車の輪荷重5 tにおけるたわみ量としている。

図-6 はシングル車の輪荷重5 tにおけるたわみ量（\( d_s \)）とダンデム車の輪荷重4 tにおけるたわみ量（\( d_t \)）の関係を示したもので、回帰式は、

\[ d_s = 1.169 d_t - 0.004 \quad \text{(r = 0.95)} \]

が得られ、ここでも両者には高い相関性がある。この結果から、ダンデム車の輪荷重4 tにおけるたわみ量の1.17倍がシングル車の輪荷重5 tにおけるたわみ量としている。

以上の結果から、シングル車の輪荷重5 tに相当するダンデム車の輪荷重を検討している。図-7 は、ダンデム車の輪荷重 \( t \) tとシングル車の輪荷重5 tによるたわみ量（\( d_s \)）に対するダンデム車の輪荷重 \( t \) tによるたわみ量（\( d_t \)）の比（\( d_s/d_t \)）との関係を示したもので、式(2)および式(4)の定数はほぼ0に等しいため無視
図－7 タンデム車の輪荷重とdss/dti の関係

し、dss/dti の関係すなわち、dss/dt5 = 0.807, dss/dt4 = 1.169 の値として使用した。この結果、図の 2 点を直線と仮定して結ぶとその式は、

\[ \frac{dss}{dti} = -0.362ti + 2.617 \]  

となり、シングル車の輪荷重 5 t によるたわみ量と同等のタンデム車のたわみ量が得られるための輪荷重は 4.47 t となっている。この値は佐藤が ESWL の方法から算出した 4.44 t とはほぼ近似したものであった。

以上の文脈による検討結果から、アスファルト舗装の表面層におけるタンデム車によるたわみ測定試験はタンデム車の輪荷重を変えるか、測定値の補正を考えれば、シングル車の輪荷重 5 t によるたわみ測定試験と整合性がありそうである。

4－2 現地における比較試験

日本道路公団では昭和59年 5 月～9月の5ヶ月間に施工している舗装工事および土工工事を抽出し、路床を対象としたタンデム車とシングル車のたわみ測定試験を実施した。

比較試験を行なった工事は、10工事で、工種は幅広いたわみ量を得るために、下層路盤、上・下部路床、上・下部路部の 5 工種とした。

たわみ測定試験は、シングル車の場合 KODAN102ベンケルマシンビームによるたわみ測定試験に従い、路床を対象としたため、普通たわみ法で複輪荷重 5 t, 空気圧 7 kg/cm² (0.69 MPa) とした。一方、タンデム車については、普通 KODAN102 に準拠し、下記に示す事項だけを変更して行なっている。

① 従来たわみ法とする。
② 複輪荷重 5 t。但し、荷重車は 2 輪回転の 10t タンデムトラックとして、後前軸と前々軸の荷重差が 200 kg 以下ものとする。
③ 調整方法は図－8 のとおりである。

図－8 複輪荷重の調整方法

図－9 タンデム車による弾性変形量とシングル車による最大変形量の関係

④ 測定終了は荷重の影響がなくなる位置まで行なう。

図－9 はタンデム車の弾性変形量とシングル車の最大変形量の関係を示したものである。回帰式は \( y = 1.016x + 0.374 \), 相関係数は 0.94 で、タンデム車とシングル車のたわみ量は定数項を除けばほぼ 1 対 1 の関係を示し、

図－10 たわみ曲線

相関性ありといえよう。

ここで、回帰式の定数項は測定法の違いが考えられる。すなわち、

① シングル車では、普通たわみ法で図－10 に示す A の最大変形量が得られ、タンデム車における復元たわみ法では図－10 に示す B の弹性変形量が得られるため、両者の差 C の永久変形量が定数項と考えられること。
② 普通たわみ法では、ベンケルマシンビームの前軸が
測定車載から0.7mしか離れていない（復元たわみ法では1.7m）ため、前脚の沈下による影響が定数項と考えられること。ななる理由が推測される。

以上のことから、路床を対象としたタンデム車とシングル車によるたわみ比較試験結果では測定法の違いによる影響を若干受けるものの、タンデム車の測定値に定数項を加えることにより、両者には整合性があることが判明した。

4-3 タンデム車によるたわみ測定試験

タンデム車によるたわみ測定試験は、シングル車によるたわみ比較試験に比べた、下記の事項が問題である。

① タンデム車では復元たわみ法に限定されること。
② 複輪荷重を5t以上にしなければならないこと。
③ 複輪荷重の設定方法に関する条件を定め、後輪および前方車の荷重を相互等荷重にすること。

そこで、この問題点について前述4.4の調査結果を基に検討を加え、表-2に示すたわみ測定試験方法を設定した。ここでは、たわみ測定試験の設定に関する検討結果の概要を紹介する。

表-2 タンデム車によるたわみ測定方法

1. 適用範囲
この試験は、タンデム車によるたわみ測定試験方法について適用する。
測定は復元たわみ法とし、路床、前輪、アスファルト混合物に用いた土などの面に対するたわみを測定する場合に適用する。

2. 用語の定義
たわみ量とは、所定の荷重を作用させたときに生じる走行面の変位量をいう。

3. 試験用具
3.1 ベンケルマンピーム ベンケルマンピームはたわみを1/2以上
の幅で測定できる。パイプレーター（ブザーなど）を備えたものとする。

図-1 ベンケルマンピーム

3.2 埋込み用棒 埋込み用棒は、直径16mm、長さ500mmの鉄板に30×20×5mmの鋼板を溶接したものとする。

図-2 埋込み用鉄板 単位cm

3.3 輸荷重測定装置 輸荷重測定装置は所定の輸荷重が測定可能なトラックで、感度3kg以下のものとする。

3.4 タイヤプレッシャージー タイヤプレッシャージーは圧力8
kg/cm²（0.76MPa）以上のもので、感度0.1kg/cm²（0.098MPa）
以下のものとする。

3.5 ダイヤルゲージ ダイヤルゲージは、最小目盛0.01mm、長針の
一回転に対するスビンドルの動き1cm、測定範囲20cm以上のものとする。

図-3 埋込み用鉄板

3.6 輸荷重 トラック荷重の複輪荷重及びタイヤ空気圧は、表-1
複輪荷重とタイヤ空気圧のとおりとする。

表-1 複輪荷重とタイヤ空気圧

<table>
<thead>
<tr>
<th>損害面</th>
<th>複輪荷重</th>
<th>タイヤ空気圧</th>
</tr>
</thead>
<tbody>
<tr>
<td>上面路床面</td>
<td>5ton</td>
<td>7.0kg/cm² (0.69MPa)</td>
</tr>
<tr>
<td>下面路床面</td>
<td>4.5ton</td>
<td></td>
</tr>
</tbody>
</table>

3.7 輸荷重 輸荷重は、後輪軸付の10tonタンドームトラックとし、前輪と前輪軸の輸荷重が200
kg以下のものとする。

3.8 輸荷重調整 輸荷重調整は図-3に示す方法で行
い、前方車船軸の荷重を測定する。

図-3 輸荷重調整方法

4. 試験方法

(1) 砂地盤は、地盤が軟かいときなど、必要があれば測定位置にトラックを走行させる。その際、錐形の中央に取付
けられている錐板が、地表面と同一になるように調節する。

(2) 輸荷重測定装置（測定面）にトラックの後輪を
止め、荷重を複輪荷重のたわみ量を測定して、基準値を測定位置に合わせる（図-4参照）。

(3) 基準と測定値を用いて、基準値に応じたがゲージ（ブザーなど）を給油し、ダイヤルゲージの初期値を記録する。

(4) ラックを速度2km/hでベンケルマンピームに接触しないように
進ませ、後輪が測定位置（ベンケルマンピームの前線）を通過し
て、輸荷重の影響がなくなる位置で停止する。このとき、車輪が基準位

10

ASPHALT
(1) 測定方法
タンデム車では、たわみ測定方法が従来の方法に限定されるため、現行試験法における路床・路盤上の普通たわみ荷重の規定に反している。しかし、今回の路床におけるたわみ測定試験結果では、タンデム車の弾性変形量とシングル車の最大変形量が高い相関性を示したことから、実用上問題ないものと思われる。

(2) 復雑荷重
現行試験法の複雑荷重試験では、路床で5t、表層・路盤で8tである。今回の調査結果では、タンデム車およびシングル車の複雑荷重を路床上で各々5tと5t、表層上で各々5tと5tおよび4tと5tとして試験したものが、それぞれの関係には高い相関性があるという結果が得られた。また、表層ではシングル車の複雑荷重5tにおけるたわみ量がタンデム車の複雑荷重4.5tのそれに相当するという結果も2つの文献で一致している。
一方、タンデム車の複雑荷重は道路交通法などの適用面を考えると5t以上することが困難であり、一般にはペンケルマンピームによるたわみ量測定試験が複雑荷重5tで行なっている現状などを考え合わせると5t以下にすることが妥当と考えられる。

したがって、タンデム車でたわみ測定試験を行う場合、復雑荷重は路床上で5t、表層上で維持管理に限定するものとして4.5tとすることが妥当と思われる。

(3) 復雑荷重の設定
タンデム車では複雑荷重の調定が難しい。特に、たわみ量の測定には後輪以上の荷重を用い、前輪が測定値に及ぼす影響は無視できないためである。そのため、前輪と後輪の荷重は等荷重にすることが必要条件となる。この等荷重にとっては積荷を水準儀にすれば解消される。

なお、復雑荷重の調整方法は図-11の順序で行なう方法が最良と考えられる。

5. あとがき
本報文では、路床面等の品質管理試験に適用するタンデム車によるペンケルマンピーム試験法に関連した事項に焦点を置いて検討した。しかし、たわみ測定試験はこの他、維持管理段階における舗装の構造の健全度の評価手法として利用される場合も多い。今後は、こうした使用を前提としたときの測定試験の勉強もしていきたいと考えている。

なお、本文の主要な部分は(財)高速道路管理会舗装に関する調査試験方法の検討報告書を引用させていただいた。最後にこの報告書をとりまとめいただいた松野委員長(佐藤道路)および日本道路公団の試験所ならびに各建設局試験課のみなさんに感謝の意を表します。

＜参考文献＞
1) 南雲貞夫：ペンケルマンピームたわみ量測定試験方法の問題点、土木技術資料 1971.6
2) デビット W ポッター：ダイナフレクト動的たわみ測定装置の実用性、道路建設 1978.5
3）高速道路調査会：路面たわみ測定機（ロードレータ）による実測結果、舗装、1974.8
4）佐藤勝久：ダイナフレクトラによる空気アスファルト舗装強度評価とたわみ上げ厚設計、土木学会論文報告集、1980.11
5）T.F.マクホマン：試験車「サンバー」による舗装たわみの解明（抄訳）、高速道路と自動車、1979.12
6）笠原 篤：舗装構造解析へのフォリング・ウェイト・デフレクトラータの利用、土木学会第39回年次学術講演会講演概要集第5部、1984.10
7）HE RBERT 他（関山正一訳）：アスファルト舗装内の温度分布とその舗装のたわみとの関係、道路建設、1970.10
8）栃木 博：アスファルト舗装のたわみ測定における温度および荷重補正、舗装、1982.9
9）水野 渚 他：軟弱路床上の試験舗装、土木技術資料、1975.10
10）佐藤祥一 他：タンデムトラックによるたわみ量試験に関する考察、道路建設、1984.8
11）内田喜太郎 他：タンデムトラックによるたわみ量試験について、第15回日本道路会議、1983.10
12）上島 勉：シングル車とタンデム車によるたわみ量試験の比較、舗装、1984.9

日本アスファルト協会試験方法 JAA-001-1978.
石油アスファルト絶対粘度試験方法
Testing Method for Absolute Viscosity of Asphalt

<table>
<thead>
<tr>
<th>項目</th>
<th>変数</th>
<th>备考</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 適用範囲</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. 試験方法の概要</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. 用語の意味</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-1. 非牛流体</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-2. ニュートン流体</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. 装 置</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-1. 粘度計</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-2. 温度計</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-3. 恒温そう</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-4. 減圧装置</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-5. 砂時計</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. 校 正</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5-1. 粘度計の校正</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5-1-1. 粘度計校正用標準液による方法
5-1-2. 標準減圧毛管粘度計による方法
6. 試料の準備
7. 操 作
8. 計算および報告
9. 精 度
9-1. くり返し精度
9-2. 再現性

実費値: 300円

申込先: 日本アスファルト協会
東京都港区虎ノ門3丁目6番7号
〒105 電話 (03)500－3956

ASPHALT
ホイールトラッキング試験方法

野上幸治*・小島逸平**

はじめに
ホイールトラッキング試験（以下WT試験）は、アスファルト混合物（以下アスコン）の塑性変形に対する抵抗性を室内で評価するための試験であり、その原型はTRRL（Transportand Road Research Laboratory）（英国）によって開発された。我が国では、昭和45年に菅原らの研究に端を発し、昭和49年に建設省土木研究所の幕張試験舎機の解析においてこの試験法が大規模に実施され、路面のわずら振れ量とアスコンの動的安定度（Dynamic Stability）（DS）の間に有意な相関関係が得られたのを契機に注目されるようになった。その後、アスファルト舗装要綱（以下要綱）の改訂（昭和53年）において、本試験が採用されてから広く普及するようになり、現在では全国で約100セット程度の試験機が実用に供している。

しかし、WT試験の普及に伴って、いくつかの問題点が指摘されるようになってきている。この中には、DSの目標値や試験精度あるいは適用の限界等の問題点が含まれており、中でも試験のバラツキについては早急な改善が望まれるところである。このようなことから、ここではWT試験の精度向上について著者と現状で改善できる試験方法（案）のとりまとめを行うことにした。

検討作業は、昭和58年度は、(1)DSに関する検討、(2)試験のメカニズムの検討、(3)試験機の検討、昭和59年度は試験方法の問題点への対応の検討を行なった。以下にこれらの概要を紹介する。

1．試験機の実態と問題点

調査はまずWT試験機の実態および試験実施方法について、民間会社（舗装会社、アスファルトメーカーを含む）および大学関係を対象にアンケート調査を依頼し（民間会社25社、大学関係5大学）、試験機48セットの運用の実態と問題点の整理を行なった。この結果、現行試験方法に対する問題点として種々の意見を収集することが出

確認され、これらの意見を項目別にとりまとめると表-1のようになる。

これより、WT試験機は機能面で同一であっても構造面で大幅に異った機械が出回っている状況にあることがわかる。また詳細に調べると、供試体の養生温度、試験車のゴム硬度、荷重と接地圧の違い、さらには、供試体の作製方法等が測定結果に可成り影響を与えていることが明らかになった。

2．問題点への対応

前述のように、WT試験に対して数々の問題点が指摘されたので、これらのうち特に試験結果の精度に係わるものをとりあげて検討を加えることにした。

試験値のバラツキの一例として、建設省土木研究所（以下土木研究所）では、同時に対数で同一条件で作製した供試体を10機関で試験を実行した。この結果、Sは密度度アスコン39例にすると、S＝1450（回/mm）、S＝720（回/mm）、変動係数＝50%となり、試験機間が異なると試験値に可成り差があることを報告している。バラツキが大きく現われた理由は、試験機の差が全体の影響を示すもので、具体的にどの要因が影響値に影響を及ぼしているかの検討はなされていない。しかし、要因の選定に従って試験を行なっても試験機によって結果が異なることは大いに予想されるところである。そこで、試験の精度を高めるための検討は、(1)試験機、(2)供試体作製方法、(3)試験条件等、個々の項目別に行なうこととした。

2-1．試験機

(1) 走行方法
現在のWT試験機では、クラウンによって車輪を走行させるクラウン式と、チェーンによって車輪を走行させるチェーン式がある。チェーン式ではモータが常に一定で回転するため走行速度は一定である。これに対してクラウン式は、クラウンピンが円盤のホブゴムを通過すると

*のがみ こうじ 日本道路公団技術部道路技術課 **こじま いっぺい 熊谷道路舗装技術研究所

Vol. 29 No. 147 (1986年) 13
# ホイールトラッキング試験の問題点

<table>
<thead>
<tr>
<th>記号</th>
<th>項 目</th>
<th>アスファルト舗装要綱規定</th>
<th>問 題</th>
<th>件数</th>
<th>実 態</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>試 験 機</td>
<td>試験機の型式：記載なし 記載なし</td>
<td>走行輪が供試体全体を走行するもの（チーヌ方式）と走行中に温度が変わるものの（クランク方式）があるが走行方向の違いにより試験値に及ぼす影響はない。</td>
<td>4</td>
<td>クランク方式（54%）</td>
</tr>
<tr>
<td></td>
<td></td>
<td>接地圧の調整ができる荷重板を備えたもの</td>
<td>直接接地（垂直荷重）方式、空気圧による接地荷重及びそののりが接地方式の違いにより試験値に及ぼす影響はない。</td>
<td>4</td>
<td>直接接地（垂直荷重）方式、空気圧による接地荷重及びそののりが接地方式の違いにより試験値に及ぼす影響はない。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>測定機械：記載なし</td>
<td>測定値が試験結果として変わる場合の2種類があり、さらに、時間変動が最も変動する場合（上部型、変曲線）になる。したがって測定方法を明記する必要はない。</td>
<td>3</td>
<td>測定値が試験結果として変わる場合の2種類があり、さらに、時間変動が最も変動する場合（上部型、変曲線）になる。</td>
</tr>
<tr>
<td>(2)</td>
<td>供試体の作製方法</td>
<td>転圧方法：現地で締め固める機械に近い機能を有する通寸に師付せしめる方法で、供試体とほぼ同一密度で締め固めるもの。</td>
<td>5</td>
<td>ローラコンプレッサ（85%）</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>転圧回数：締め固め密度100 ± 1%の締め固め密度になる回数</td>
<td>模擬圧の違いにより試験結果に及ぼす影響はない。</td>
<td>2</td>
<td>模擬圧の違いにより試験結果に及ぼす影響はない。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>転圧方法：転圧ニッパー、搭載ロータ、ハンドロータ</td>
<td>4</td>
<td>転圧方法：転圧ニッパー、搭載ロータ、ハンドロータ</td>
<td></td>
</tr>
<tr>
<td>(3)</td>
<td>試 験 条 件</td>
<td>供試体の大きさ300×300×50 mm</td>
<td>2</td>
<td>供試体の大きさ300×300×50 mm</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>記載なし</td>
<td>記載なし</td>
<td>1</td>
<td>供試体割れを考慮した供試体形状の数値規定がある。</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>記号</th>
<th>項 目</th>
<th>アスファルト舗装要綱規定</th>
<th>問 題</th>
<th>件数</th>
<th>実 態</th>
</tr>
</thead>
<tbody>
<tr>
<td>(4)</td>
<td>試 験 条 件</td>
<td>接地圧：一般5.5 ± 0.15 kg/cm²、重交通6.4 ± 0.15 kg/cm²</td>
<td>同じ接地圧でも重交通に差が生じるのと、重交通の影響で試験値に及ぼす影響がない。</td>
<td>5</td>
<td>5.5kg/cm²を得る荷重45kg (441 N) ～78kg (867 N)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>滞渇温度：50土0.1℃</td>
<td>接地圧は、載荷時間によって変化するので接地圧を統一（5.5 (0.54)、6.4 (0.63)、11.5 kg/cm² (1.13 MPa)）する必要はない。</td>
<td>2</td>
<td>5.5kg/cm²を得る荷重45kg (441 N) ～78kg (867 N)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>記号</th>
<th>項 目</th>
<th>アスファルト舗装要綱規定</th>
<th>問 題</th>
<th>件数</th>
<th>実 態</th>
</tr>
</thead>
<tbody>
<tr>
<td>(5)</td>
<td>走行 速度</td>
<td>試験車は、供試体中央部を42±1回/分で走行速度で測定するもの</td>
<td>クランク方式及びチーヌ方式の違いによる走行速度差が試験値に及ぼす影響はない。</td>
<td>1</td>
<td>クランク方式及びチーヌ方式の違いによる走行速度差が試験値に及ぼす影響はない。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>走行時間：4時間分</td>
<td>1</td>
<td>走行時間：4時間分</td>
<td></td>
</tr>
</tbody>
</table>

## その他
1. データ整理方法
   - 少なくとも2個
2. 試験値
   - 改善アスファルトなど動的安定度Sが非常に大きい試験方法の評価方法
   - 3 | 厚さ5cm以外の試験方法の評価方法はどうするか。試験値にパラメタがあるため、試験値は2個で良い。 | 1 | 厚さ5cm以外の試験方法の評価方法はどうするか。試験値にパラメタがあるため、試験値は2個で良い。 |
問題はないといえる。この意味から載荷方法はいずれの方法でもよいものとした。

(3) 測定機構

流動変動量の測定方法は、機種によって供試体の中央部分で測定することと、最大の沈下を示す部分で測定するものがある。さらに、供試体の変形は、供試体変位によって異なるので4)、測定位置を定める必要がある。試験機の精度と信頼性の向上を考えると、変形量の測定位置は供試体中央とし、機構を単純化した方が良いと思われるもので、この方法を試験方法案にとり入れた。

2-2 供試体製作方法

(1) 締め固め方法

供試体の性状を均一にするためには、締め固め装置として、ローラコンパクタを使用することが望ましい。この場合締密は、土木研究所の調査では800〜1,000 kg（785 N〜981 N）の荷重範囲で使用されていると報告しているので、これを参考にすると、荷重は900 kg（823 N）、線圧は30 kg/cm（294 N/cm）が適切と考えられる。

図1 ホイールラッキング試験中の車輪の走行速度の変化（走行距離22.8 cm）

図2 クランク式WTの載荷時間分布

図3 クランク式WTの沈下量分布

表2 荷重測定結果

<table>
<thead>
<tr>
<th>型式</th>
<th>載荷位置</th>
<th>供試体の端</th>
<th>中</th>
<th>右端</th>
</tr>
</thead>
<tbody>
<tr>
<td>クランク式</td>
<td>61</td>
<td>60</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>チェーン式</td>
<td>60</td>
<td>61</td>
<td>60</td>
<td></td>
</tr>
</tbody>
</table>
一方転圧回数は、アスコンの骨材粒度やバイインダーの性状によって締固め効果が異なるので、経験的に決めるか、転圧回数を変えて供試体を作製し、キャリプレーショングーカープから実験的に決める必要がある。
供試体の締固め度の違いによってDSに差が生じる例として図-4のような結果がある。これより、DS は供試体の密度に応じて補正することが望ましいが、密度とDS の関係は混合物によって異なるので、補正係数を得るためには検査値を基準値に変換する必要があります。したがって、実用上は密度の管理範囲を現行より厳しくすることが有効である。土木研究所の調査結果では、機関によって供試体作製方法の細部で様々な違いがあるのので、これらを合わせた標準的な供試体作製方法（案）を示しているが、参考にすることもよい（表-3 参照）
(2) トーバース走行の有無
トーバース走行の有無によって供試体の密度は増加し、DS の値が変わる。これは、多くの研究者が指摘するように D S はともにトーバース走行によって密度ではなく骨材の配向状態も変化することが影響するとと思われる。土木研究所の試験結果（表-4 参照）によると、密度が概ね同じであっても、トーバース走行の有無によって DS に差が生じることがわかる。したがって、パラッキを小さくするためには、トーバース走行を使用しない供試体の作製方法が望ましいので、この方法を試験方法案にとり入れた。
(3) 供試体の寸法
供試体の寸法は、300 × 300 × 50 (mm) のものの実績が多く、これ以外の寸法（例えば 400 × 400 × 50 (mm) 等）のものは、走行回数を前記のものと同一にすると走行速度は大きくなり、それに応じて D S も小さくなるので、実績の多いものに統一することとした。
(4) アスコンの作製
供試体用のアスコンは、ミキサで製造するが、1 バッチあたりの混合量はミキサの混合能力によって、1 バッチ 1 枚分とする機関と、2 枚分を 1 度に混合する機関がある。アスコンの均一性の観点からは後者の方が望ましいように思われるが、供試体を 1 枚作製するには少なく

表-3 供試体の標準的な作製方法（案）

<table>
<thead>
<tr>
<th>項目</th>
<th>方法</th>
</tr>
</thead>
<tbody>
<tr>
<td>型枠の予熱</td>
<td>混合または締固め温度（電気乾燥機）</td>
</tr>
<tr>
<td>型枠への材料の付着防止処理</td>
<td>予熱前にグリス、中性洗剤、石粉などを塗る</td>
</tr>
<tr>
<td>ミキサーの保温</td>
<td>電気式オイルヒーター</td>
</tr>
<tr>
<td>アスファルトの計量</td>
<td>アスファルトの投入前後で、容器の重量を計って確認する</td>
</tr>
<tr>
<td>ドライミキング (秒)</td>
<td>20 〜 30</td>
</tr>
<tr>
<td>ワットミキング (秒)</td>
<td>120</td>
</tr>
<tr>
<td>検査</td>
<td>1層検査</td>
</tr>
<tr>
<td>締固め時のハンダタンバ等使用</td>
<td>転圧前に全面に軽くかける</td>
</tr>
<tr>
<td>使用するアスコンの量</td>
<td>混合したもの全量（1 バッチ 1 枚作製）</td>
</tr>
<tr>
<td>転圧前の付着防止処理</td>
<td>必要ならば紙をはさむ</td>
</tr>
<tr>
<td>転圧面の予熱</td>
<td>重さ調節付電気ヒーター</td>
</tr>
<tr>
<td>型枠と転圧面の間にはさまざまなアスコンの処理</td>
<td>型枠等を除して転圧まで</td>
</tr>
<tr>
<td>締固め後の整形転圧</td>
<td>行わない</td>
</tr>
<tr>
<td>トーバース走行</td>
<td>行わない</td>
</tr>
</tbody>
</table>

ASPHALT
とも10分程度を要するので、その間にゴムの温度が低下することが懸念される。従って、アスコンの製造量は、1バッチ当たり1枚分とすることを原則とした。

2-3 試験条件
(1) 荷重と接地圧
要綱の試験法の規定では、供試体に加える外力は、試験前のゴム硬度と車輪の接地圧を規定しているが、上載荷重の大小さには触れていない。このため、試験機によって荷重の大きさに差がある。しかし、アンケート調査結果によれば、接地圧を一定にした場合のソリッドタイヤのゴム硬度と荷重間にはほとんど相関が認められていない(図-5参照)⑨。この原因は、ゴムの材質が一定でないこと、接地面積の測定方法が各機関によって異なることなどが考えられる。特に要綱でもゴム硬度70という規定を設けているが、試験温度がまちまちであり、常温で測定する機関と60℃で測定する機関が約4:6の割合で存在しており、ゴム硬度の温度変化による違いが荷重の違いをもたらしていると考えられる。

図-6は土木研究所の調査結果であるが、同一の試験機関で作製された同一配合の供試体で試験を行っているにもかかわらず、荷重が大きい程DSが小さくなっていることが判る。これらのことから、載荷力の規定は、現行の接地圧の規定を総荷重規定に改めることが望ましい。

荷重の大きさは、建設省関係の試験機関の平均値では

<table>
<thead>
<tr>
<th>表-4 トラバースの影響</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>地 域</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>近 橋</td>
</tr>
<tr>
<td>20分</td>
</tr>
<tr>
<td>23.61</td>
</tr>
<tr>
<td>23.76</td>
</tr>
<tr>
<td>98.1</td>
</tr>
<tr>
<td>90.2</td>
</tr>
<tr>
<td>1.00</td>
</tr>
<tr>
<td>1.00</td>
</tr>
<tr>
<td>中 国</td>
</tr>
<tr>
<td>60分</td>
</tr>
<tr>
<td>23.88</td>
</tr>
<tr>
<td>23.69</td>
</tr>
<tr>
<td>98.1</td>
</tr>
<tr>
<td>2.55</td>
</tr>
<tr>
<td>2.70</td>
</tr>
<tr>
<td>四 国</td>
</tr>
<tr>
<td>24分</td>
</tr>
<tr>
<td>23.00</td>
</tr>
<tr>
<td>10.00</td>
</tr>
<tr>
<td>10.5</td>
</tr>
<tr>
<td>九州</td>
</tr>
<tr>
<td>58.1分</td>
</tr>
<tr>
<td>2451</td>
</tr>
<tr>
<td>254.9</td>
</tr>
<tr>
<td>2529</td>
</tr>
<tr>
<td>1.07</td>
</tr>
<tr>
<td>99.7</td>
</tr>
<tr>
<td>基準密度(μg/cm³)</td>
</tr>
<tr>
<td>中 国</td>
</tr>
</tbody>
</table>

図-5 ゴム硬度(60℃時)と荷重の関係

図-6 接地圧とDSの関係

Vol. 29 No. 147 (1986年)
65kg（637N）となっている（図7参照）。一方、日本道路公団試験所が実施した調査では、x = 70kg（716N）となっている。さらに、前述のアンケート調査の結果では、x = 70kg（686N）となっている。以上の調査結果から、平均的な値として70kg（686N）が適切であり、この値であれば従来の接地圧6.4kg/cm²（0.63MPa）は期待できる。さらに、この場合の管理幅は±1kg（±0.81N）とする。また、ガムの硬度が異なると混合物のミールング効果に差を生じため、常温と60℃の2段階でガム硬度を規定し、ガム質も耐熱性ガムとすることができる提案した。

（2） 試験筒

図8に試験温度とガム硬度の関係を示した。これによれば、ガム硬度の温度による変化はタイヤに与える変差はあるが、20℃と60℃では6程度の差が見られている。したがって、60℃におけるガム硬度を78±2と規定した場合、60℃における硬度は84±4程度になる。

タイヤの交換基準は明記できるような資料はないが、ガムが劣化すればガム硬度が大きくなることが考えられると、ガム硬度のチェックを定期的に行うことにより、ガム硬度と表面の乾燥状況を調べて管理することとした。

（3） 試験温度

試験温度の設定は、わが国の気象条件を考慮して、特に場合の除いて60±1℃にしている。

試験温度がDSに及ぼす影響の調査の1例が図9である。これによれば、接地圧が大きいほど温度変化がDSに与える影響が大きい傾向にあり、接地圧6kg/cm²（0.98MPa）で温度60℃の場合は、±1℃の温度変化によってDSは約15%程度変動することが認められる。

飯島らは、温度と接地圧を変えてDT試験を行ない、要領の規定の範囲内で管理した場合でも30%近い差が生じることを示している（図7参照）。また、試験温度、試験圧の接地圧やガム硬度あるいは、タイヤ走行速度等を因子とした試験を行ない、各因子のDSに及ぼす影響を調査した。

この結果、温度の寄与率が約70%、接地圧のそれが約7%であり、他の要因に比較して温度の管理が非常に重要であることを指摘している。（図10参照）

このようなことから、温度管理の設定は現状より厳しくする必要があることから、60±0.5℃で管理する方法を提案した。

（4）養生

図11に土木研究所で行なった供試体養生実験の結果を示す。この実験は、室温の供試体を60℃にセットした恒温槽で養生するケースであり、ほぼ5時間で供試体の中央部が60℃に達する様子がわかる。一方、日本道路
表 - 5  動的安定度の推定値

<table>
<thead>
<tr>
<th>接地圧</th>
<th>溫度</th>
<th>59</th>
<th>60</th>
<th>61</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.25</td>
<td>1101</td>
<td>+274</td>
<td>935</td>
<td>862</td>
</tr>
<tr>
<td>6.46</td>
<td>1018</td>
<td>+178</td>
<td>864</td>
<td>734</td>
</tr>
<tr>
<td>6.55</td>
<td>940</td>
<td>+88</td>
<td>759</td>
<td>678</td>
</tr>
</tbody>
</table>

上段 動的安定度（回／mm）
下段 標準条件に対する増減（％）

図 - 10 溫度と動的安定度の関係

公団試験所の試験によれば、室温から養生槽と一緒に温度を上げる場合は、約12時間要する結果を報告している。以上のことから、養生時間の規定方法は、供試体をあらかじめ試験温度に保った恒温槽で5時間以上養生することとし、養生後に供試体中心部が試験温度に達しない時はさらに時間を延長することとした。

供試体作製後の養生時間については、供試体作製後に12時間以上の室温養生はマーシャル安定度試験で適用されている実績から、WT試験でも同様の規定とするとした。

(6) 走行距離

走行距離の規定は、供試体の寸法の項で述べたように、載荷時間は走行距離に反比例し、走行距離が長くなるに従ってDSが増加するので、一般的には現行どおり23±1cmで統一することとした。

(6) 走行速度

走行速度は、アンケート調査結果からも42±1回/分の規定が満足されており、変更を要する問題点もないので、現行のままとした。

(7) 走行方向

供試体の側压方向と試験軸の走行方向を一致させるか否かによるDSの差について検討した報告は得られていない。しかし、一般の道路ではローラの側压方向と車両の走行方向はおおむね一致していることから、締固め方向と走行方向は一致させることにした。

2-4 その他

(1) データの整理方法

WT試験の結果得られる時間変形量曲線は、混合物の種類によって図-12に示すようなタイプがある。

一般には、直線型の勾配からDSを求め、直線部分の延長からdo（圧密変形量）を求めているが、上凸型や変曲型はそれぞれ圧密変形なり急激な変形の途中過程であるため、これら2つのタイプでは、一定の変形に対する変形抵抗性は求められないが、一つのルールとして直線型の場合と同様に計算することとした。しかし、doを求めめる作図では、変曲型に限っては、端部に値にならない範囲として、勾配が一定ゆるやか変曲型を延長して求める方法を提案した。
(2) 試験個々

D Sの報告には、変動係数が20％を超えない数個のデータの平均値を用いることとしている。いくつかの供試体のW T試験から母平均を推定する場合、その精度は試験個数の平方根に比例するので、個数が多いほど向上するが、実用上の限界がある。一方、アンケート調査の結果、試験個数は3個以上実施している機関が多いこと、個数が2個の場合パラツキの判定が困難になる等的理由から、3個以上の供試体について試験を実施することが望ましいとした。

3. まとめ

ホイールトラッキング試験にかかわる様々な問題点の中でも、試験値のパラツキに着目し、試験精度を高めるための対策の検討を行なった結果、現状で合意できる技術的事項を中心に、ホイールトラッキング試験方法を提案することができた。このうちの主なものには以下のようにある。

(1) W T試験によるD Sは、試験温度によって異端に変化するので、パラツキを小さくするためには、恒温室や養生室の温度管理を厳密に行なう必要が明らかになった。このため、現行の60±1℃を60±0.5℃の管理にした。

(2) 試験経のゴム硬度は、温度に応じて変化するので、所定の接地圧を得るためには、上載荷重に差が生じてD Sのパラツキに影響を与えている。このようなことから、ゴム硬度の規定を、常温で84±4、60℃で78±2とした、定期的に硬度をチェックするようにした。

(3) 接地圧規定を荷重規定に改め、6.4 kg/cm²（0.628 MPa）を保証できる荷重として70±1 kg（687±9.8 N）に調整することにした。

(4) 供試体の作製方法の変更によくD Sのパラツキが認められるので、性状の寸法の統一（300×300×50），ローラコンパクタ（延圧30kg/cm²（290 N/cm²））の鈍固め（基準密度の100±1％），供試体1枚当たりの計量（基準密度×性状容積×1.03），養生（性状に入れたまま室温で12時間以上）等の作製条件を明記し、標準的作業方法（案）を示した。

(5) D Sの大きなものについては、記録計の精度から差が出るので、平均値が6,000回/mmを超えるものは、6,000以上とすることとした。この場合の平均値は、変動係数が20％を超えない3つの平均をとることとした。

ホイールトラッキング試験方法の詳細はKODAN230「ホイールトラッキング試験法」として、日本道路公団試験方法（昭和60年10月）に示されているので参考にされたい。

なお、本調査のとりまとめにあたって、建設省土木研究所、日本道路公団から貴重な資料の提供をいただいたこと、ならびに、東京工業大学工学部土木工学科助手、柴野賢治氏、建設省土木研究所道路部舗装研究室研究員、池田拓哉氏、日本道路公団試験所舗装試験室主任、酒井篤氏、同舗装試験室、土屋健氏がそのとりまとめに当たったことを記して感謝申し上げます。

＜参考文献＞

1) RRL：The Wheel-Tracking Test LF50 Issue 2, 1971年2月
2) 常原他ら著：アスファルト舗装のRuttingに関する研究、土木学会年次学術講演会、1970年3月
3) 建設省土木研究所：アスファルト舗装の配合設計、材料に関する幕張試験舗装及び室内実験、土木研究所資料第923号、1974年3月
4) 高速道路調査会：舗装に関する調査試験方法の検討報告書、1984年3月、1985年2月
5) 建設省土木研究所：ホイールトラック試験共通試験結果の解析、土木研究所資料、第2124号、1984年7月
6) 姫野賢治ほか：アスファルト舗装の流動特性について、第15回日本道路会議、1983年9月
7) 萩原幸ほか：アスファルト舗装の変形における載荷時間の扱いについて、第15回日本道路会議、1983年9月
8) 小鳥正和ほか：ホイールトラッキング試験法の改善に関する提案、土木技術資料、vol 26, No.4, 1984年
9) 篠原篤ほか：アスファルト舗装におけるニューディング作用に関する研究、第13回日本道路会議、1979年9月
10) 長谷川昭雄ほか：アスファルト舗装の変形抵抗に関する研究、第14回日本道路会議、1981年9月
11) 新田直ほか：転動荷重下におけるアスファルト舗装の変形特性、土木学会論文報告集、1983年1月
12) 三浦貞ほか：水浸ホイールトラッキング試験によるアスファルト舗装のパラツキ、舗装、1981年7月
13) 飯島尚ほか：動的安定度の精度向上に関する検討、第15回日本道路会議、1983年9月

1983年9月
わだち掘れ測定

野上幸治*・高橋哲躬**

1. まえがき
わだち掘れの定量化は、路面の管理や舗装の維持修繕工事の実施にあたって極めて重要なものの1つであると言える。日本道路公団では、10年前から高速測定車によるわだち掘れの測定を行ない、主に路面の管理に使用してきたが、その測定結果の利用や測定サイクルなどの点で若干の問題が提起されている。

このため、日本道路公団では、「舗装に関する試験方法の検討委員会」を設け、わだち掘れの測定およびその他の調査試験に関して昭和58年度から2カ年にわたってその研究を行なった。

本文は、前記委員会において行なわれたわだち掘れ測定に関する検討結果の概要を紹介したものである。

2. わだち掘れ測定方法

2-1 直線定規もしくは水準による方法
3.6m直線定規もしくは水準によるわだち掘れ測定方法は、対象とする路面の両端の基準点に直線定規又は水準を通常10cm上りで設置し、横断方向20cm間隔でスケールによりミリメートル単位で測定する。

高速道路における測定例を図-1に示す。走行車線では路肩レーマークの内側、追越車線においては中央分離帯側のレーマークの内側を基準として直線定規又は水準を設置し、これからの下がりを20cm間隔で測定する。

2-2 横断プロフィルメータによる方法
横断プロフィルメータは図-2に示すように、路面を走行する車輪を装着した記録器がビーム上を移動して、路面の横断形状を記録するもので、記録紙上の形状からわだち掘れ深さを算出するものである。

測定方法は、横断プロフィルメータを対象とする位置にセットし、ビームが水平になるように水準器を見ながら高さ調整ネジ又はハンドルで調整した後、車輪を路面に接地させ記録器を移動させる。記録された路面形状は通常高さ方向が実測大、横断方向が1/10である。

2-3 わだち掘れ測定車による方法
昭和59年度に建設技術評価制度の開発課題のひとつに「路面状態自動測定装置の開発」が取り上げられ、いくつかの装置が開発された。その中でわだち掘れの測定に関しては、光切断法の原理を応用しているものが多く、またデータの記録媒体も固定子カメラビデオ収録、固定子カメラ、磁気テープ記録などにより省力化およびデータ処理の高速化が図られるなどエレクトロニクス技術の多様な活用が図られている。

ここではその中のひとつとして、従来から使用されているわだち掘れ測定車について簡単に記す。

この測定装置は車輪に塔架された撮影装置および条線投影器からなるもので、基準点を対象に通常100m間隔で夜間に撮影調査するものである。

* のがみ こうじ 日本道路公団技術部道路技術課  ** たかはし てつみ 大林道路㈱技術部技術課

Vol. 29 No. 147 (1986年)
測定車は50〜60km/hの速度で走行し、通常路肩に設置された距離標もしくは基準点を対象に20〜100m間隔で撮影するが、測定は最小5m間隔まで行なうことができる。

写真撮影結果の判読は電算処理が可能であるが、高速道路におけるわだち摺れ算定の主な作業手順は次のとおりである。

(1) 図-3に示すように、走行車線においては路肩側レーニーマークの内側を、また追越車線においては中央分離帯レーニーマークの内側を基準点Aとする。これより矢印の方向に、写真上で車線幅員に分離された位置をBとし、これを結ぶ線を基準線とする。

(2) わだち形状の測定は、基準点Aより20cm間隔で基準線からの高低差を読み取る。このときわだち摺れの凹部及び凸部の最大値を同様に読み取り、その差をもってわだち摺れとする。

これらの方法によるわだち摺れの算定結果は図-5に示すように極めて高い相關が見られるが、ピーク法は平均法に比べ若干大きく表現されるようである。

3. わだち摺れの算定方法および測定精度

3-1 わだち摺れの算定方法

わだち摺れの算定方法は、各種機関や調査目的などで異なるが、いわゆる“ピーク法”と“平均法”に大別される。なお、どの測定方法を用いても、わだち摺れの算定は、これらのうちのどちらかで行なっているのが通常である。

ピーク法は主として高速道路で用いられているもので、図-4(a)に示すように、車線幅員の両端の基準点を結ぶ直線を基準線とし、この線から車線幅員の内側点と最低点までの垂直距離を求めて、その差をわだち摺れとする方法である。

これに対し平均法は主として一般国道等で用いられているもので、図-4(b)に示すように両端の基準点と最高点を結んだ線から最低点までの鉛直距離を求めて、その差の内側又は外側のわだち摺れのいずれか大きい方をわだち摺れとする方法である。

3-2 わだち摺れ測定車と横断プロフィルメータによる測定値の比較

ここでは、高速道路において測定実績の最も多い、写真によりわだち摺れの算出を行なうタイプのわだち摺れ測定車のみに関する検討を行なった。わだち摺れ測定車による走行測定値と横断プロフィルメータによる測定値
の残差を表-1に示す。これによると、残差の平均値は1.14mmで、残差の標準偏差が1.56mmである。これに対し測定車による静止測定値と横断プロフィルメータによる測定値の残差の平均値は0.76mmである。

表-1 わだち掘れ測定車と横断プロフィルメータによる測定値の残差

<table>
<thead>
<tr>
<th>項目</th>
<th>サンプル数</th>
<th>残差平均値</th>
<th>残差標準偏差</th>
</tr>
</thead>
<tbody>
<tr>
<td>中央</td>
<td>30</td>
<td>1.20mm</td>
<td>1.68mm</td>
</tr>
<tr>
<td>東名</td>
<td>26</td>
<td>1.06mm</td>
<td>1.42mm</td>
</tr>
<tr>
<td>計</td>
<td>56</td>
<td>1.14mm</td>
<td>1.56mm</td>
</tr>
</tbody>
</table>

また、20m間隔で測定車と横断プロフィルメータによる測定結果によれば、わだち掘れ深さの残差の平均値は0.73mmで標準偏差が1.72mmであり、この時の測定車の測定位置のずれは平均27cmであった。なお静止測定の場合のわだち掘れの残差は平均0.33mmで、標準偏差が1.35mmであった。

以上の結果から、わだち掘れ測定車と横断プロフィルメータを比較した場合には、測定車が走行している場合で2.5mm程度、静止している場合で2mm程度、わだち掘れに差が生じると言えよう。

3-3 測定値の再現性

わだち掘れ5mmの箇所と15mm程度の箇所で、横断プロフィルメータおよび水系を使用して、1測点につき5回繰り返し、10測点のわだち掘れを求めたのが図-6である。この時、同一測点における測定はマークインをせずに距離標からおおよその位置を見当づけて行なった。

これに対し、わだち掘れ測定車による測定は、横断プロフィルメータおよび水系による測定箇所と異なるが、20測点を1測点につき5回繰り返し、走行測定したわだち掘れを求めたものである。これらは測定箇所は異なるが、ほぼ同じ条件で測定を行なっているので相違が発生するとは考え、時間係数で比較したものをある。

図-6によると各測点の変動係数の平均は、水系が12.8％、横断プロフィルメータが3.9％、わだち掘れ測定車が9.0％であり、各測定方法の再現性は比較的良いと言えるが、水系による方法は他の方法と比べ若干劣ると考えられる。

4. 各測定方法の問題点と対策

4-1 直線定規(水系)あるいは横断プロフィルメータによる方法

直線定規や水系、あるいは横断プロフィルメータによる方法は、比較的小規模な調査の場合に一般に用いられている方法で簡単であるが、次に示すような問題点がある。

(1) 路上における人力測定となり、作業の安全性の問題や走行車両への影響などがある。

(2) 大規模調査で測定点が多くなると、短時間での測定は困難である。

(3) 交通規制が避けることができず、測点を代表位置に限定しても必ずしも経済的ではない。

(4) 人力測定は代表点での測定に限定されており、路面状況の把握あるいはわだち掘れの長期予測等を行なう場合そうできない。

以上のように直線定規や水系、あるいは横断プロフィルメータによる測定方法は、高密度道路のような大規模調査には向かないが、小規模な箇所では交通規制を伴なえば簡単であり、経済的な方法であると言える。

4-2 わだち掘れ測定車による方法

この方法は人力による測定方法に比べ、連続的に大規模な調査が可能であるが、次のような問題点がある。

(1) 測定規模が小さい場合は不経済となる。

(2) 高速で測定すること、測定位置の固定が困難である。前項の検討では、平均で約30cmのズレがあった。
このように測定方法としては人力によるものと比べ、その問題点は少ないものと考えられる。

つぎに、高速道路におけるわだち掴れ測定結果の利用方法の問題点に関して検討を進め、以下の結論を得ることができた。

(1) わだち掴れの評価単位としては、維持管理工事における日施工延長等を考慮すれば、100 m毎とするのがよい。

(2) わだち掴れ評価値の再現性等の向上を図るため、100 m内に2点以上の測定を行ない、その平均値を評価値とするのがよい。

(3) 限られた調査予算のなかで効率的な測定を行なうため、路面の現状把握をその主な目的に、予測システム等の併用を前提とし、表-2に示す調査サイクルを提案した。

表-2 わだち掴れ調査サイクル

<table>
<thead>
<tr>
<th>断面（西方向）平均交通量（台/日）</th>
<th>大</th>
<th>中</th>
<th>小</th>
</tr>
</thead>
<tbody>
<tr>
<td>断面（西方向）平均交通量（台/日）</td>
<td>4 以上</td>
<td>4 ~ 2</td>
<td>2 以下</td>
</tr>
<tr>
<td>大</td>
<td>50,000 以上</td>
<td>1回/2年</td>
<td>1回/2年</td>
</tr>
<tr>
<td>中</td>
<td>25,000 ～25,000</td>
<td>1回/2年</td>
<td>1回/3年</td>
</tr>
<tr>
<td>小</td>
<td>25,000 以下</td>
<td>1回/2年</td>
<td>1回/3年</td>
</tr>
</tbody>
</table>

注）調査サイクルは、わだち掴れの進行速度と断面平均交通量から求められる。

4-3 高速道路におけるわだち掴れ測定法

日本道路公団では、以上の検討結果を基にわだち掴れの測定方法をKODAN2254として定め、現在運用中である。この測定方法を表-3に示したので、参考にしていただければ幸いである。

表-3 路面のわだち掴れ測定方法

1. 適用範囲
この試験方法は、路面におけるわだち掴れの測定について規定する。

2. 測定用機具
2.1 直線測定器または水洗

2.2 橫断プロフィルメータ
横断定義の上を移動しながら機械的に横断形状を記録するもの。

2.3 わだち掴れ測定車
走行しながら車両に搭載された測定装置により一定間隔で連続的に横断形状を測定するもの。

3. 測定方法
3.1 直線測定器または水洗による方法

(1) 直線測定は図-1に示すように走行車線（第1，第2，登坂車線を含む）においては路肩側レーンマークの内側を、進路車線

にあっては中央分離帯側戸門マークの内側を基準としてセットする。
(2) 測定は、矢印の方向に20cm間隔で行い、スケールで横断形状をmm単位まで読み取る。

3.2 橫断プロフィルメータによる方法

(1) 左右のレーンマークをまたぐように横断プロフィルメータをセットする。
(2) 高さ調整ねじにより左右の高さを同一にする。
(3) 図-2に示すように、ビーム上波形記録器を移動させて横断形状を記録する。

波形記録器

高さ調整ねじ

図-2 橫断プロフィルメータ

3.3 わだち掴れ測定箇所による方法

(1) 調査対象区分が長い場合には、車両に搭載されたわだち掴れ測定装置により走行しながら一定間隔で連続的に横断形状の測定を行う。
(2) 測定間隔は原則として50mとする。

4. 結果の算出
4.1 わだち掴れの算出
測定の結果は図-3のように測定断面毎にD0, D1をmm単位で記録し、D0, D1の大きい方の値を測定断面のわだち掴れ量とする。

レーンマーク

a.主に進流によるもの

図-3 わだち掴れ量の定義

(ケース2)

b.主に摩擦によるもの

4.2 結果の整理
わだち掴れは、原則として100m毎で整理する。
5. あとがき

本文では、高速道路の路面管理に適用するわだと揺れの測定法について検討を加えたが、この検討を進めるほど、もっと基本的な事項へと帰って「わだと揺れ」という現象をみつめなおすことの必要性が痛感させられた。すなわち、舗装に要求される機能は何か、そうした機能をいかに定量化するかなどの点の検討である。

わだと揺れが道路の機能に及ぼす影響は、車両の操続性の低下およびそこを形成した水によるハイドロプレーニングや水はねなどの視界困難などを含み、こうした現象を適確に表現しうる定量化の手法に関して研究を進めるべきであろう。

最後に、前記委員会では、日本道路公団の福島、加藤、松田および騒音防止の丹治の諸氏が本試験のとりまとめを担当したことを記して、感謝の意を表する。

＜参考文献＞
1）高速道路調査会：舗装に関する調査試験方法の検討報告書，昭和60年2月
2）深沢：供用中の調査 “路面評価システムと新しい路面性状測定方法の開発” アスファルト，vol 28，No.144，昭和60年
3）高速道路調査会：アスファルト舗装路面性状の実態調査に関する解析結果報告書，昭和53年
4）日本道路公団：日本道路公団試験方法，昭和60年10月
ひび割れ測定

野上 幸治*・高橋 哲躬**

### 1. まえがき

ひび割れは、舗装の健全度を評価する一つの指標として測定されることが多いが、現在のところその定量化（評価）の手法には極めて問題が多いと言わざるを得ない。すなわち、ひび割れは、発生段階が様々で、その発生原因やメカニズムなどを不明な点が多いため、現在の所有効な定量化（評価）は困難である。

高速道路においては、現在、北は関東圏から南は九州道まで様々なひび割れが生じ、維持管理上の問題となっているが、今後こうしたひび割れの在格的な修繕の検討が必要となっている。

このようなことから、ひび割れの有効な評価手法の必要性は極めて高く、日本道路公団では、「財」高速道路調査会に「舗装に関する調査試験方法の検討委員会」を発足させ、その検討を実施してきている。

本文では、前記委員会において行なわれたひび割れに関する検討結果の概要を述べる。

### 2. ひび割れ測定方法

#### 2－1 スケッチによる方法

スケッチにひび割れ測定方法は、図－1に示すように技術者がスケールを用い、先ず柵用紙のスケッチ用紙にひび割れを描く。このとき道路延長方向は10m程度の間隔で点をマーキングするかあるいは巻尺を延ばして置くこととしたい。なおこの場合写真も同時に撮影するものとよいが、路面のひび割れをチョークで明示すると明確に写すことができる。

このほかひび割れの発生している調査対象箇所ごとに3～5人の技術者で、直接ひび割れ率を評価する方法もある。

#### 2－2 ひび割れ測定車による方法

ひび割れ測定車はスチールカメラやスリットカメラを用いて路面を連続的に撮影する方式が一般的であるが、レーザを路面に照射し、その陰影を高密度ビデオにて収録するものもある。

<table>
<thead>
<tr>
<th>中央分岐部</th>
<th>上り線</th>
<th>1mメッシュ法で路面を分野する하였다。</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>7.0</td>
</tr>
</tbody>
</table>

#### 図－1 スケッチによるひび割れ測定

ここでは従来から使用されていたものについて記すが、これは車両に搭載された撮影装置、電源装置および照明装置からなる測定車で、目視点検によってひび割れの発生している車線を対象として撮影を行う。

撮影時間帯の交通状況が少なくな、また昼間において一連の条件下で適当な露出が得られることから夜間撮影が望ましい。

路面を撮影したポジフィルムによるひび割れ読取解析からひび割れ率の算定結果までの手順は次のとおりである。

<table>
<thead>
<tr>
<th>路面撮影</th>
<th>ひび割れ測定車による路面連続撮影。巻尺 1/200</th>
</tr>
</thead>
<tbody>
<tr>
<td>50～60m/h</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ネガフィルム</th>
<th>35mm ASA 250</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>ポジフィルム</th>
<th>35mm 4倍～10倍拡大</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>読取解析</th>
<th>調査区間決定</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>道路中、種別（A、B、C）</td>
</tr>
<tr>
<td></td>
<td>ひび割れ長さ、パッチング面積</td>
</tr>
<tr>
<td></td>
<td>路面構造物、工区間延長</td>
</tr>
<tr>
<td></td>
<td>橋梁、高架、路線。トンネルの種別</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>データ加工</th>
<th>MT</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>コンピューター</th>
<th>ひび割れ率 = ( \frac{\text{ひび割れ面積（mm²） + パッチング面積（mm²）}}{\text{調査面積（mm²）}} \times 100 % )</th>
</tr>
</thead>
<tbody>
<tr>
<td>結果</td>
<td>ひび割れ率、ひび割れ度の算出</td>
</tr>
</tbody>
</table>

* のがみ こうじ 日本道路公団技術部道路技術課  **たかはし てつみ 大林道路舗装技術課
ポジフィルムの解釈はメッシュ法により行ない、計測メッシュの個数をもって調査対象の面積とする。メッシュの大きさは、高速道路では車線幅を4分割し、延長方向にあっては1mピッチのメッシュを採用している。 2－3 目視による方法

目視によるひび割れ測定方法は欧米においても、ひび割れのみならずSurface distress（表層の損傷度）を評価するためvisual rating（目視評価）と呼ばれ広く普及しているが、わが国ではいまだ試行段階と言わざるを得ない。

日本道路公団で試行した手法は、主として路面のひび割れにおける破損の程度を、視察者がひび割れ調査表に基づいて路肩を走行する車両に同乗し調査するものである。その概念を示す以下のとおりである。

1) 車は視察者を同乗し、高速道路の路肩を原則として10～20 km/hの速度で走行する。
2) 視察者は助手席および運転者後部席にて、走行車線、追越車線および路肩等を観察し、運転者が読み上げた距離標を記入する。
3) 測定は原則として車線ごとに、延長方向100m単位で行なうが、ひび割れ発生地点の距離標で明示してもよい。
4) ひび割れの程度は、①少ない、②中程度、③ひどいの3段階で評価し、ひび割れの形状により、①線、②横、③面に分類する。
5) 道路構造はひび割れ発生の原因の一推定資料として用いるため、①土工、②切削、③橋、④トンネルに分類する。
6) 路面の破損の観察は、維持修繕に利用できるように、ひび割ればかりでなく、ボットホールについても行う。

2－4 ひび割れ割合の算出方法

現在のひび割れの測定結果は、アスファルト舗装では路面に現われたひび割れの占める面積の割合を示すひび割れ率で、コンクリート舗装ではひび割れ延長を調査面積で割って求めるひび割れ度でそれぞれ表されている。

1) ひび割れの分類

① 面状ひび割れ：1メッシュ内に2本以上のひび割れが入ったもの。
② 縦線状ひび割れ：1メッシュ内に1本だけひび割れがあり、その方向が相対的に延長方向であるもの。
③ 横線状ひび割れ：1メッシュ内に1本だけひび割れがあり、その方向が相対的に横断方向であるもの。

④ バッティング：バッティングは1箇所100m²以下のあるものとし、その中でも大規模な打換えや段差修正部は除き実面積とする。

2) ひび割れ率の算出

ひび割れ率はアスファルト舗装を対象とし、メッシュサイズは1m×1/4車線幅員とし、式(1)により算出する。

\[ \text{ひび割れ面積（m}^2\text{）} = \text{ひび割れ面積（cm}^2\text{）} \times \frac{\text{長さ（cm）}}{300} \times 100 \times \frac{100}{\text{面積（m}^2\text{）}} \]

3) ひび割れ度の算出

ひび割れ度はコンクリート舗装を対象とし、メッシュサイズは0.5×0.5mとし、式(2)により算出する。

\[ \text{ひび割れ度} = \frac{\text{面積（m}^2\text{）} \times 100}{\text{ひび割れ長さ（cm）} + \frac{0.3}{\text{長さ（m）}}} \]

3. ひび割れ測定結果の利用

3－1 高速道路におけるひび割れの実態

高速道路における舗装のひび割れの調査結果の一例を図2に示した。これによれば、ひび割れは昭和58年3月末現在で調査した箇所約1,800車線kmのうち、ひび割れ率10％を越える箇所は144車線kmであり、主として九州道、東名および中国道に多い。

ひび割れの発生が比較的多い路線のうち、九州道は全体として舗装方向の線状ひび割れが発生し、その後が増えるものや、面状に発展したものも目立つ。

国際道路では舗装方向の線状ひび割れが車輪通過部付近に発生したもののがほとんどであり、その他切削等に発生するもの。
生した横線状ひび割れも見受けられる。これに対し東名では、車輪通過部付近に発生し、面状のひび割れに進展したものが多く、わだち掘れもかなり大きい事が特徴である。これらのひび割れのうち中国道で発生しているものを写真－1に示した。

一方、図－3はひび割れが原因で修繕された箇所の修繕直前のひび割れ率を知るため、それぞれの箇所の修繕前1年以内のひび割れ率を示したものである。図によれば修繕直前のひび割れ率は平均で94%でありほぼとんどが20%以下であることがわかる。また、各道路の修繕直前のひび割れ率は極めて不ぞろいであることもわかる。

このようなことから、高速道路ではひび割れ率で見ると比較的小さな時点で修繕されており、その値も道路毎パラツキ、修繕時期の判断値としてのひび割れ率の効撃性には疑問が残るといえる。

3－2 ひび割れ測定結果の利用状況

高速道路におけるひび割れの調査資料の利用の仕方は次のようである。
(1) 路面の異状を早期に発見する。
(2) 路面性状を常に把握する。
(3) 路面性状の将来予測を行い、長期的な計画性をもった維持修繕工事を行う。

昭和55年度から60年度までのひび割れ測定結果の利用方法について、日本道路公団の管理局等アンケート調査を行ったところ、表－1に示すような利用の仕方を行っている事が明らかとなった。これによると、ひび割れ調査結果は予算要求等の資料として用いられているのが最も多いようである。

表－1 日本道路公団におけるひび割れ調査結果の利用方法

| 1 | 予算要求の資料 | 4 |
| 2 | 路面の性状把握あるいは路面管理 | 6 |
| 3 | 路面状況の将来予測 | 5 |
| 4 | 維持修繕計画の立案 | 3 |
| 5 | 維持修繕工事の資料 | 3 |
| 6 | 購造選定調査 | 1 |

* 計5箇所および1線区からの調査資料による。

しかし、ひび割れ調査結果は、費用の割りには有効に利用されていないのが現状である。その主な理由としては、現行のひび割れ調査結果では、ひび割れの発生原因等が明らかにされにくく、維持修繕への有効利用が難しいことがあげられる。

また、車の走行性に対しては、ひび割れよりわだち掘れの方が大きな影響を及ぼすため、わだち掘れの優先的に考慮してしまおうとも、有効利用がされにくい理由のひとつと考えられる。

3－3 ひび割れ調査の適用

舗装のひび割れ調査は、ひび割れの程度と調査目的に応じて最も適した手法により行わなければならない。現在のところひび割れの調査は図－4に示すように、目視によるもの、ひび割れ測定車によるものおよびサブリング調査に大別することができる。ここでは、これら手法の高速道路での適用方法に関する検討を行う。

(1) 目視によるひび割れ測定は、調査の初期の段階でひび割れ発生の有無を確認するため、原則として毎年定期的に実施するのが望ましい。そこでひび割れが確認されて、その発生原因が判明できることは修繕の要否
判断を行ない、修繕を直ちに必要としない場合には、次年度に再度調査を行う。
(2) ひび割れの発生がある程度目視調査により確認できた後、ひび割れの面的な状況の定量的な把握や進行状況の把握などの詳細調査が必要な場合、あるいは記録として残したい場合などは、ひび割れ測定車による方法を行うのが望ましい。
(3) 目視調査方法等によりひび割れの原因が究明できず、且つ修繕工法の決定が困難な場合には、これらを検討するための資料の一部を得るために、原因究明調査としてサンプリング調査を行うのが望ましい。

図-4 維持管理の各段階におけるひび割れ測定

サンプリング調査は、既設舗装体より切り取り供試体を採取し、各種試験を実施するものである。ひび割れの原因が主として混合物の老化等に起因する場合、切り取り供試体の観察または混合物の空げき率や回収アスファルトの性状等を検討することにより、ひび割れの発生原因が推定でき、ひび割れ深さの測定と合わせて、修繕工法を検討する一資料を得られる。従ってサンプリング調査方法においては、標準的試験体として表-2に示す項目を行なうのが望ましい。なお、路面の状態によってはたわみ測定なども考えられる。

サンプリング調査方法は、局部的な調査となりがちなので、対象区間を代表するような試料採取を行ない、また、補装履歴等の資料調査も合わせて行なうことが必要である。

4. 目視によるひび割れ測定
4.1 目視によるひび割れ測定方法
ここでは高速道路に用いるための検討した目視によるひび割れ測定方法について、その概要ならびに試行結果等について述べる。

日本道路公団では、前記委員会での検討結果を基に目視によるひび割れ測定方法を、暫定（案）として表-3のとおり定めている。

表-2 サンプリング調査方法での標準試験項目

<table>
<thead>
<tr>
<th>試験項目</th>
<th>試験方法</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>供試体の観察</td>
<td>一</td>
<td>色、つや、粒度、混合物のはくり等</td>
</tr>
<tr>
<td>ひび割れ深さ測定</td>
<td>一</td>
<td>表面からどの程度入っているか</td>
</tr>
<tr>
<td>密度測定</td>
<td>KODAN217</td>
<td>空げき率の算出、粒度や境界面の形態の検討</td>
</tr>
<tr>
<td>アスファルト回収試験</td>
<td>KODAN229</td>
<td>既設舗装のアスファルトの形状の検討</td>
</tr>
<tr>
<td>鉛直度測定</td>
<td>JIS K 2207</td>
<td>アスファルトの老化度合の検討</td>
</tr>
<tr>
<td>軽荷点測定</td>
<td>JIS K 2207</td>
<td>アスファルトの老化度合の検討</td>
</tr>
</tbody>
</table>

表-3 路面のひび割れ測定方法

1. 適用範囲
この測定方法は、補装面のひび割れ測定について規定する。
2. 目視によるひび割れ測定方法
2.1 測定用機具
(1) 測定車 ひび割れを観察する視察者を乗車させる車は、原則として道路トラックを用いる。
(2) ひび割れ観察用表-1に示すものを用いる。
2.2 測定方法
(1) 測定車は通常10〜20km/hの速度で路肩を走行しながら、視察者は目視によりひび割れの状態を観察し、ひび割れ調査票に記入する。ただし、トンネルや構架など路肩が狭く低速走行した場合安全性に問題がある箇所は、上記速度にとらわれず十分注意して観察する。
(2) 視察者は原則として、助手席と運転席が分離する2箇所に位置し、助手席の視察者は主として路肩および走行車線を、後部席の視察者は主として走行車線および進化車線を観察する。
(3) 視察者は延長方向に原則として100m単位で、走行車線、進化車線、その他（路肩、登坂部、バスストップ、パーキングエリアやサービスエリアのランプ等）の車線別に記入する。
(4) ひび割れ数は、横、縦、面、ポットホールの形態別に、およびなしを含め4段階の発生程度別に記入する。なお、施工経過の関係で未発生、または補装フィリップ仕上げの破壊は、通常のひび割れと区別づけないように記入する。
(5) ひび割れ調査票は、1枚で1kmを占めているので、原則として区切りかつ上に1kmごとに使用する。
(6) 調査票には、路線名、画像年月日、上下車線および天候を記入する。

Vol. 29 No. 147 (1986年)
2.3 結果の整理

測定結果は年度ごとにファイル化し、路面状況をすぐ把握できるようにすると共に、修繕箇所の選定および工法の検討あるいはひび割れの進行状況の検討に利用できるようにする。

ひび割れ調査表（目指）

<table>
<thead>
<tr>
<th>路面名</th>
<th>調査年月：昭和□□年□月□日</th>
</tr>
</thead>
<tbody>
<tr>
<td>下(土)、上(木)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>キロポスト</th>
<th>程度</th>
<th>車線</th>
<th>種類</th>
<th>道路構造</th>
</tr>
</thead>
<tbody>
<tr>
<td>(自)</td>
<td>1少ない</td>
<td>1走行</td>
<td>1土工</td>
<td></td>
</tr>
<tr>
<td>(自)</td>
<td>2中程度</td>
<td>2道越</td>
<td>2横</td>
<td>2切盛</td>
</tr>
<tr>
<td>(自)</td>
<td>3ほど</td>
<td>3その他</td>
<td>3面</td>
<td>3模</td>
</tr>
<tr>
<td>(自)</td>
<td>4ロッドホール</td>
<td></td>
<td>4トンネル</td>
<td></td>
</tr>
<tr>
<td>(自)</td>
<td>1少ない</td>
<td>1走行</td>
<td>1土工</td>
<td></td>
</tr>
<tr>
<td>(自)</td>
<td>2中程度</td>
<td>2道越</td>
<td>2横</td>
<td>2切盛</td>
</tr>
<tr>
<td>(自)</td>
<td>3ほど</td>
<td>3その他</td>
<td>3面</td>
<td>3模</td>
</tr>
<tr>
<td>(自)</td>
<td>4ロッドホール</td>
<td></td>
<td>4トンネル</td>
<td></td>
</tr>
<tr>
<td>(自)</td>
<td>1少ない</td>
<td>1走行</td>
<td>1土工</td>
<td></td>
</tr>
<tr>
<td>(自)</td>
<td>2中程度</td>
<td>2道越</td>
<td>2横</td>
<td>2切盛</td>
</tr>
<tr>
<td>(自)</td>
<td>3ほど</td>
<td>3その他</td>
<td>3面</td>
<td>3模</td>
</tr>
<tr>
<td>(自)</td>
<td>4ロッドホール</td>
<td></td>
<td>4トンネル</td>
<td></td>
</tr>
</tbody>
</table>

4-2 目視によるひび割れ測定方法の試行

道路走行しながらひび割れ測定が行なえるか、また路面のひび割れはどの程度見えるかなどを検討する目的で、昭和59年10月、中央自動車道・相模湖IC～大月ICの下り車線の24km区間において、4台の車を8名の観察者が乗車し、目視によるひび割れ測定方法を試みた。

測定箇所は、数年前までは多くのひび割れが発生していたが、修繕が進み、測定時点ではひび割れはわずかしか観察できなかった。写真2-2は運転席の後部座席より見た路面状況である。

目視によるひび割れ測定方法の試行の結果、路面状況は十分観察できる事は確認できたが、他次の場合が明らかとなった。

1) 延長方向100m単位であるか、あるいはひび割れ発生地点で車線別にひび割れ発生箇所がわかる。
2) ひび割れ形状および3段階のひび割れの程度がわかる。また長さ50cm程度、幅0.5mm程度のひび割れを観察できる。
3) 8名のうち1～2名のみが観察したひび割れは全体の40%程度あったが、そのうちのほとんどは施工継目の開きや航上、または橋梁のジョイント付近の舗装の損傷であった。従って測定要領の確認により、精度は向上すると思われる。
4) ひび割れは比較的多く発生している箇所では、観察者の評価が少くなり、測定精度は向上するものと思われる。

また次のことが問題点としてあげられた。

1) 初期調査という位置づけからすると、車は1台、視察者は2人で適当かどうかの検討が必要である。
2) 施工継目や橋梁ジョイント付近の取扱いについて、またプラッシュやシールホール等のひび割れ以外の損傷の取扱いについての検討が必要である。
3) トンネル等では安全のため車の走行速度の増加を余儀無くされ、観察がしにくい。また道路を低速で走行するため、安全性の面でやや不安がある。
4) 気象条件あるいは日光の方向により、ひび割れの評価が異なる懸念がある。
5) 測定結果の整理方法の検討が必要である。

5. あとがき

本文では、簡便な目視によるひび割れの測定法を紹介したが、こうした測定法は前述のとおり観測ではVisual Ratingと言われ、舗装維持管理システムの重要な入力データを構成している。今後、こうした手法がわが国の高速道路に最も適したVisual Ratingとなるように検討・改良を加えて行く必要がある。また、得られた測定結果を有効に利用する評価システムに関するもの、さらにそのシステムを用いて舗装の健全度を評価する手法等に関するものなど、まだ研究しなければならない問題が山積していると言えよう。

最後に、本文では前記の委員会の検討結果を大幅に引用させていただいたことを記して、当委員会の松野委員長（佐藤道路）はじめ委員、幹事の諸氏に謝意を表します。
昭和60年
3) “Collection and Use of Pavement Condition Data” NCHRP Synthesis of Highway Practice 76 TRB 1981
4) 日本道路公団 日本道路公団試験方法、昭和60年10月

講演
講演にあたりて
日本アスファルト協会名誉会長
谷 藤 正 三
昭和61年度道路予算および
道路整備の動向について
建設省道路局企画課課長柿原
藤 信 秋
中国地方における道路整備の動向
建設省中国地方建設局道路部長
藤 井 壽 明
水車式創造工学
不即不離の効用—
東京理科大学理工学部土木工学科教授
横 口 芳 朗
アスファルト舗装の
構造設計法に対する基本的考察
日本大学理工学部土木工学科助教授
阿 部 順 政
フルデブスアスファルト舗装技術指針案について
アスファルト舗装技術委員会
フルデブス分科会長
河 野 宏

主催者挨拶
日本アスファルト協会
会長 鹿 島 實

開催地代表者挨拶
建設省中国地方建設局長
岡 田 智 夫
広島県土木建築部長
岩 本 利 彦
広島市中区建設部長
小 野 正

全国からの参加者内訳

<table>
<thead>
<tr>
<th>開催者</th>
<th>参加者数</th>
</tr>
</thead>
<tbody>
<tr>
<td>建設省・公団</td>
<td>46 (9.0)</td>
</tr>
<tr>
<td>自治体（市町村）</td>
<td>108 (21.2)</td>
</tr>
<tr>
<td>道路建設業</td>
<td>223 (43.8)</td>
</tr>
<tr>
<td>学校関係</td>
<td>28 (5.5)</td>
</tr>
<tr>
<td>本協会会員</td>
<td>63 (12.4)</td>
</tr>
<tr>
<td>米賓・招待者</td>
<td>41 (8.1)</td>
</tr>
<tr>
<td>合 計</td>
<td>509 (100%)</td>
</tr>
</tbody>
</table>

Vol. 29 No. 147 (1986年)
アスファルトの回収試験

野上 幸治*・荒井 孝雄**

1. まえがき
アスファルト混合物からアスファルトを回収し、その性状を知る手法は、舗装体中のアスファルトの性質を調べるのに重要であり、とくに最近ではアスファルト舗装の再生利用が普及し、再生骨材や既設舗装体中のアスファルト性状を求める目的で利用されることが多くなった。さて、混合物からアスファルトの性質を変化させずに回収することは重要な意味をもつ基本的な事項であるが、歴史的に見ても回収試験の正否はアスファルトの稠度の再現に重点が置かれ、例えばブランクテストにより、原アスファルトと回収アスファルトの針入度の差の小さい方法、もしくはそれが可能な溶剤の選定が基本となっていると言ってよい。
ところが、わが国ではアスファルト回収試験は「アプソン法」なる名称で知られている。発祥の地である米国の変遷を踏まえつつと、回収試験がASTMで取り上げられたのは1944年のことであり、1949年にASTM D 762-49として規定されている。その後、1965年までこの方法が存続したが、現在行われているD 1856標準試験法は1961年に取上げられ、1963年に正式な規定となってきた今日に至っており、この間に、4回の改訂が行われている。

わが国では、名神高速道路調査（昭和41年7月・42年7月）を契機として回収試験が行われたようであったが、それ以前から回収試験方法として導入されたのはASTM D 762の方法であったこともあり、それ以降とこの方法が用いられてきた。しかし、新しいD 1856の標準化とともに、新たな方法が考案され、それが国独自の工夫も加えられた結果、公的な試験方法の確立をみないまま、各機関により各様の試験が行われて今日に至っている。

このような状況から、日本道路公団では高速道路調査会に委託し、「舗装に関する調査試験方法の検討」委員会の一つとして、アスファルト回収試験の取上げ、現状把握を行うとともに、共通試験等の検討を行なった上で、

アスファルト回収試験方法のとりまとめを実施した。ここでは、その一端を紹介するとともに、回収試験方法の概要を述べることとする。

2. アンケート方式によるアスファルト回収試験の実態調査

前記のように、回収試験方法自体が多様化しているため、その実態を把握することが必要となりと考えられ、表-1に示す機関に対し、アンケート形式による調査が実施された。

ここでアンケート調査項目の個々について詳細を示すことは紙面の都合上割愛させて頂くが、集計結果の概要を表-2の中にまとめて示す。

表-1 調査機関内託

<table>
<thead>
<tr>
<th>区分</th>
<th>機関数</th>
</tr>
</thead>
<tbody>
<tr>
<td>官</td>
<td>公庁</td>
</tr>
<tr>
<td>舗装会社研究所</td>
<td>21</td>
</tr>
<tr>
<td>石油会社研究所</td>
<td>2</td>
</tr>
<tr>
<td>道建協試験所</td>
<td>1</td>
</tr>
<tr>
<td>計</td>
<td>34</td>
</tr>
</tbody>
</table>

*のかけ こうじ 日本道路公団技術部道路技術課
**あらい たかお 日本舗道協技術研究所

32 ASPHALT
<table>
<thead>
<tr>
<th>区分</th>
<th>項目</th>
<th>適用の方法</th>
<th>項目</th>
<th>適用の方法</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>ASTM D 695の方法</td>
<td>2.</td>
<td>ASTM D 702の方法</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>3.</td>
<td>4.</td>
<td>5.</td>
<td>6.</td>
</tr>
<tr>
<td>3.</td>
<td>7.</td>
<td>8.</td>
<td>9.</td>
<td>10.</td>
</tr>
<tr>
<td>5.</td>
<td>15.</td>
<td>16.</td>
<td>17.</td>
<td>18.</td>
</tr>
<tr>
<td>6.</td>
<td>19.</td>
<td>20.</td>
<td>21.</td>
<td>22.</td>
</tr>
</tbody>
</table>

### 表2 フラフリフート試験方法の説明（アンケート調査に基づく）と共通試験条件

<table>
<thead>
<tr>
<th>1.</th>
<th>2.</th>
<th>3.</th>
<th>4.</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.</td>
<td>6.</td>
<td>7.</td>
<td>8.</td>
</tr>
<tr>
<td>9.</td>
<td>10.</td>
<td>11.</td>
<td>12.</td>
</tr>
<tr>
<td>13.</td>
<td>14.</td>
<td>15.</td>
<td>16.</td>
</tr>
<tr>
<td>17.</td>
<td>18.</td>
<td>19.</td>
<td>20.</td>
</tr>
</tbody>
</table>

なお、本試験方法の適用範囲と、共通試験条件については、以下の通りです。

- アンケート調査に基づく。
- 一般的な調査結果に基づく。

実施した基準条件は以下の通りです。

- 1. ASTM D 695の方法
- 2. ASTM D 702の方法
- 3. その他の方法

その他の方法は以下の通りです。

- 1. ASTM D 695の方法

試験の詳細については、アンケート調査結果をもとに以下の通りです。

- 一般に、アンケート調査は以下の通りです。
- 1. ASTM D 695の方法
- 2. ASTM D 702の方法

なお、詳細はアンケート調査結果をもとに以下の通りです。

- 1. ASTM D 695の方法
- 2. ASTM D 702の方法

以上の通り、アンケート調査結果に基づく試験方法が適用される。
3. 共通試験による回収試験の実施

アスファルトの回収試験については以上に述べたような背景があることから、わが国としての抽出・回収試験の確立化が望まれるとところであるが、各機関が独自の方法を導入している現在、それらを簡単に統一化することは困難であるし、また混乱が生じる。

しかし、すべての条項を一つに定めることは当面無理としても、回収アスファルトの試験結果をとくに重要な影響をもたらすと考えられる諸条件については統一することが急務であるとの考慮から、その条件を限定して、9機関によるアスファルト回収試験に関する共通試験が計画された。それでもなお残る問題については、将来における検討課題として残し、とりあえず現状で可能な標準試験方法の確立を目的として実施されたものである。

共通試験においては、諸条件のうちとくに回収アスファルトの性状に影響を及ぼすと推定される要因として、試料（混合物供体板）の解きかけ方と条件と蒸留の方法に着目して実施された。これらを含めて、共通試験における統一実施条件を表-2の右欄に示す。

実施内容：
① 原アスファルトの針入度および軟化点試験
   使用アスファルトは針入度80～100であるが、試験実施機関には針入度を示さないで実施。
② 原アスファルトに対するプランクテスト
   原アスファルト100gを400mlのトリクロエチレンに、60℃で1時間かけて溶解したものについて、表-2右欄の蒸留試験条件によって実施し、①の針入度、軟化点と比較。
③ 混合物からのアスファルト抽出・回収試験
   混合物供体板は日本道路公団試験所で作製されたものを用い、解きかけ方の条件を表-2の①および②の2通りに分けて実施。なお、各機関で従来から行っている独自の方法も一つの条件として加えて実施。
   蒸留方法の一つの制約条件として、図-1に示すような寸法および容量（500ml）をもつ蒸留フラスコを試作し、各機関に配布して使用した。500mlとした理由は、旧アプソン法の三口フラスコを含めて500ml容量のものが多く使用されていることや抽出液全量（約400ml）を回収試験に一度に供するのを目的にしていることなどのためである。

もう一つの蒸留条件として、滴下開始からの蒸留時間に対する蒸留温度の管理並びにCO₂吹込み条件を図-2のように標準的に示し実施した。ただし、各機関独自の方法の場合はこれによらない。

4. 共通試験の結果と分析

（1）第1次共通試験結果の傾向
   共通試験データの詳細はここでは省略するが、各機関のデータを照合し分析した結果、原アスファルト（以下原アスと略す）とそのプランクテストの針入度および軟化点が、次のような傾向を示すことが判明した。
   ① 原アスの針入度および軟化点データの各機関によると差が大きい（針入度：平均82、範囲75～90，軟化点：平均46.4℃、範囲45.0～48.0℃）。
   ② しかし、原アスに対するプランクテストによる回収アスの針入度の差および軟化点の差は各機関とも小さく、回収試験そのものは原アスの針入度、軟化
点が再現されているという意味で、今回の設定条件で概ね問題なく実行できることを示した。
以上の2点からみて、各機関の針入度および軟化点試験そのものの操作上での差がデータに反映していると言わざるを得ないという結果であった。（これらの結果を第1次共通試験と比較する。なお、ここでは混合物からの回収試験結果は省略し、後述することにする。）
そこで、各機関の試験操作の違い（試験機器の違いも含めて）がデータに特異性を与えているかどうかを確認するため、第2次共通試験として針入度級の異なる2つのアスファルト（試料A、B）について針入度、軟化点を求め、その傾向をみることとした。
（2）第2次共通試験の結果とデータの補正
表-3は第1次における原アスデータと第2次における試料A、Bに対する各機関ごとの針入度及び軟化点試験結果を示したものである。この結果から、図-3および図-4に示すように、各機関とも針入度及び軟化点データの傾向が一致し、特異性が認められた。
このため、混合物からの回収試験による針入度、軟化点データを比較するには、各機関ごとに存在する針入度および軟化点試験の傾向（偏差）を除去する必要がある。
そこで、針入度は、1次試験の原アスと2次試験の試料Aについて、各機関のデータと全データの平均値との差をそれぞれ求め、2つの平均値の逆符号を補正值とし、一方、軟化点については、1次の原アス、2次試料A、Bそれぞれについて求めた各平均値との差の平均値に逆符号をつけたものを補正值とし、混合物からの回収アスの針入度および軟化点に対してそれぞれ補正した。補正した結果を表-4に示す。
補正後の値が、混合物の回収試験におけるパラツキを表わしていると一応考えられるが、差はかなり大きいことがわかる。しかしながら、解きほぐし方法①と②の関係や①と独自の手法との関係等は、例えば針入度について

<table>
<thead>
<tr>
<th>区分</th>
<th>項目</th>
<th>機関</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>平均X</th>
<th>標準偏差σx-1</th>
<th>変動係数Cv (％)</th>
</tr>
</thead>
<tbody>
<tr>
<td>原アス</td>
<td>鈍入度</td>
<td>80</td>
<td>77</td>
<td>80</td>
<td>89</td>
<td>76</td>
<td>84</td>
<td>90</td>
<td>83</td>
<td>83</td>
<td>82.3</td>
<td>5.0</td>
<td>6.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>軟化点（℃）</td>
<td>47.0</td>
<td>46.0</td>
<td>46.5</td>
<td>46.5</td>
<td>46.0</td>
<td>47.0</td>
<td>46.5</td>
<td>45.5</td>
<td>45.0</td>
<td>46.4</td>
<td>0.88</td>
<td>1.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>（1次）</td>
<td>P1</td>
<td>-0.8</td>
<td>-1.2</td>
<td>-1.0</td>
<td>-0.7</td>
<td>-0.7</td>
<td>-0.7</td>
<td>-0.6</td>
<td>-1.2</td>
<td>-1.3</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>試料A</td>
<td>鈍入度</td>
<td>55</td>
<td>53</td>
<td>59</td>
<td>59</td>
<td>60</td>
<td>60</td>
<td>64</td>
<td>57</td>
<td>60.0</td>
<td>60.9</td>
<td>4.9</td>
<td>8.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>軟化点（℃）</td>
<td>50.0</td>
<td>49.0</td>
<td>49.0</td>
<td>50.0</td>
<td>50.0</td>
<td>49.5</td>
<td>49.5</td>
<td>49.5</td>
<td>49.8</td>
<td>49.6</td>
<td>0.89</td>
<td>1.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>（2次）</td>
<td>P1</td>
<td>-1.0</td>
<td>-1.3</td>
<td>-1.1</td>
<td>-0.5</td>
<td>-0.3</td>
<td>-0.8</td>
<td>-0.7</td>
<td>-1.0</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>試料B</td>
<td>鈍入度</td>
<td>28</td>
<td>27</td>
<td>27</td>
<td>33</td>
<td>26</td>
<td>26</td>
<td>30</td>
<td>31</td>
<td>26</td>
<td>28.2</td>
<td>2.5</td>
<td>9.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>軟化点（℃）</td>
<td>57.0</td>
<td>56.0</td>
<td>56.0</td>
<td>57.5</td>
<td>56.5</td>
<td>57.0</td>
<td>56.5</td>
<td>56.0</td>
<td>56.5</td>
<td>56.6</td>
<td>0.98</td>
<td>1.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>（2次）</td>
<td>P1</td>
<td>-0.8</td>
<td>-1.2</td>
<td>-1.1</td>
<td>-0.4</td>
<td>-0.7</td>
<td>-0.9</td>
<td>-0.8</td>
<td>-0.8</td>
<td>-1.1</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

試料Aは針入度60～80級、Bは20～40級
σ² = σ₁² + σ₂²  

が成り立つ。

変動係数は Cᵥ₁ = σ₁ / X であるから(1)より、

Cᵥ₁ * X = \sqrt{(Cᵥ₂ * X)² - (Cᵥ₁ * X)²}  

(2)

したがって、

Cᵥ₁ = \sqrt{Cᵥ₂² - Cᵥ₁²}  

(3)

ただし、Cᵥ₁：回収試験全体の変動係数
Cᵥ₂：回収試験操作による変動係数
Cᵥ₂：針入度または軟化点試験に係る変動係数

(3) 式を用いて、回収アスファルトの補正前の針入度および軟化点について Cᵥ₁ を求めると表-6 のようである。ただし、回収アスファルトのレベルに合わせるため、表-5 の生アスファルトの変動係数 Cᵥ₂ は原アスファルトと試料 A の平均値を用いた。

この結果から見ると、回収試験操作のみに係る変動係数誤差 Cᵥ₁ は、共通試験で設定した③、④条件の変動係数 Cᵥ₂ に対し、針入度で 41%、軟化点で 46% と全体の半分以下となっているが、試料ごとの差異をもはや観察することができず、軟化点の平均値は 10% と小さいとなっているが、共通試験条件による方法は補正前の針入度に近づけてみれば、独自法と殆ど変わらない結果となっている。

表-5 回収試験に係る誤差

<table>
<thead>
<tr>
<th>区分</th>
<th>項目</th>
<th>針入度</th>
<th>軟化点 (℃)</th>
<th>部 類</th>
<th>X</th>
<th>σ₋₋₋</th>
<th>CV (％)</th>
<th>CV 平均 (％)</th>
<th>X</th>
<th>σ₋₋₋</th>
<th>CV (％)</th>
<th>CV 平均 (％)</th>
</tr>
</thead>
<tbody>
<tr>
<td>生 プラス ファルト</td>
<td>針入度 30—100</td>
<td>82.3</td>
<td>5.0</td>
<td>Cᵥ₂ 6.1</td>
<td>Cᵥ₂ 9</td>
<td>48.4</td>
<td>6.9</td>
<td>1.9</td>
<td>Cᵥ₁ 1.9</td>
<td>Cᵥ₂ 9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>軟化点 60—80</td>
<td>60.0</td>
<td>4.9</td>
<td>8.1</td>
<td>7.1</td>
<td>49.8</td>
<td>6.9</td>
<td>1.8</td>
<td>Cᵥ₁ 1.8</td>
<td>Cᵥ₂ 9</td>
<td>Cᵥ₁ 1.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>軟化点 B 20—40</td>
<td>28.2</td>
<td>2.5</td>
<td>9.0</td>
<td>9.0</td>
<td>56.8</td>
<td>6.9</td>
<td>1.6</td>
<td>Cᵥ₁ 1.6</td>
<td>Cᵥ₂ 9</td>
<td>Cᵥ₁ 1.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>回収アスファルト</td>
<td>針入度 30—100</td>
<td>68.2</td>
<td>6.3</td>
<td>Cᵥ₂ 9.2</td>
<td>Cᵥ₂ 9</td>
<td>48.7</td>
<td>1.0</td>
<td>Cᵥ₁ 2.0</td>
<td>Cᵥ₂ 9</td>
<td>Cᵥ₁ 1.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>軟化点 60—80</td>
<td>68.4</td>
<td>6.1</td>
<td>9.2</td>
<td>9.2</td>
<td>49.2</td>
<td>1.4</td>
<td>2.9</td>
<td>Cᵥ₁ 2.9</td>
<td>Cᵥ₂ 9</td>
<td>Cᵥ₁ 1.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>軟化点 B 20—40</td>
<td>28.2</td>
<td>2.5</td>
<td>9.0</td>
<td>9.0</td>
<td>56.8</td>
<td>6.9</td>
<td>1.6</td>
<td>Cᵥ₁ 1.6</td>
<td>Cᵥ₂ 9</td>
<td>Cᵥ₁ 1.9</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

表-6 回収試験に係る変動係数 Cᵥ₁ (補正前)

<table>
<thead>
<tr>
<th>条件</th>
<th>試験方法</th>
<th>針入度, %</th>
<th>軟化点, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>イ、ロの平均に対して</td>
<td>5.9 (41)</td>
<td>1.7 (46)</td>
<td></td>
</tr>
<tr>
<td>独自の方法に対して</td>
<td>6.7 (47)</td>
<td>0.6 (10)</td>
<td></td>
</tr>
</tbody>
</table>

（）内は回収アスファルト全体の変動係数 Cᵥ₂ (表-5参照)に対する百分率 (100 × CV₀²/Cᵥ₂²) で計算

表-4 混合物回収アスファルトの性状 (補正後)

<table>
<thead>
<tr>
<th>区分</th>
<th>項目</th>
<th>針入度</th>
<th>軟化点 (℃)</th>
<th>部 類</th>
<th>X</th>
<th>σ₋₋₋</th>
<th>CV (％)</th>
<th>CV 平均 (％)</th>
<th>X</th>
<th>σ₋₋₋</th>
<th>CV (％)</th>
<th>CV 平均 (％)</th>
</tr>
</thead>
<tbody>
<tr>
<td>補正 前</td>
<td>針入度</td>
<td>+4</td>
<td>+6</td>
<td>+2</td>
<td>8</td>
<td>+4</td>
<td>1</td>
<td>7</td>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>軟化点 (℃)</td>
<td>0</td>
<td>+1.0</td>
<td>0.5</td>
<td>0</td>
<td>1.5</td>
<td>1.5</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>① の方法</td>
<td>針入度</td>
<td>71</td>
<td>79</td>
<td>68</td>
<td>66</td>
<td>67</td>
<td>69</td>
<td>72</td>
<td>59</td>
<td>62</td>
<td>68.1</td>
<td>5.8</td>
</tr>
<tr>
<td>軟化点 (℃)</td>
<td>49.0</td>
<td>48.5</td>
<td>49.0</td>
<td>50.0</td>
<td>48.5</td>
<td>48.0</td>
<td>49.0</td>
<td>50.5</td>
<td>49.0</td>
<td>0.9</td>
<td>1.8</td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>0.6</td>
<td>4.0</td>
<td>0.7</td>
<td>0.5</td>
<td>0.9</td>
<td>1.7</td>
<td>1.0</td>
<td>0.8</td>
<td>0.9</td>
<td>0.6</td>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td>② の方法</td>
<td>針入度</td>
<td>72</td>
<td>77</td>
<td>68</td>
<td>65</td>
<td>65</td>
<td>71</td>
<td>70</td>
<td>67</td>
<td>61</td>
<td>66.3</td>
<td>7.1</td>
</tr>
<tr>
<td>軟化点 (℃)</td>
<td>48.5</td>
<td>49.0</td>
<td>50.0</td>
<td>52.0</td>
<td>49.0</td>
<td>47.5</td>
<td>48.5</td>
<td>50.0</td>
<td>51.0</td>
<td>49.0</td>
<td>1.4</td>
<td>2.8</td>
</tr>
<tr>
<td>P</td>
<td>0.7</td>
<td>0.4</td>
<td>0.5</td>
<td>0.4</td>
<td>0.8</td>
<td>1.0</td>
<td>0.8</td>
<td>0.9</td>
<td>0.5</td>
<td>0.6</td>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td>独自 の 方 法</td>
<td>針入度</td>
<td>67</td>
<td>74</td>
<td>66</td>
<td>64</td>
<td>63</td>
<td>68</td>
<td>69</td>
<td>59</td>
<td>66.3</td>
<td>4.5</td>
<td>6.7</td>
</tr>
<tr>
<td>軟化点 (℃)</td>
<td>49.5</td>
<td>50.5</td>
<td>50.0</td>
<td>49.5</td>
<td>49.0</td>
<td>48.0</td>
<td>48.5</td>
<td>51.0</td>
<td>49.6</td>
<td>1.1</td>
<td>2.3</td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>0.6</td>
<td>0.9</td>
<td>0.5</td>
<td>0.7</td>
<td>0.9</td>
<td>1.0</td>
<td>0.8</td>
<td>0.4</td>
<td>0.6</td>
<td>0.6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

表-5 回収試験に係る変動係数誤差

<table>
<thead>
<tr>
<th>区分</th>
<th>項目</th>
<th>針入度</th>
<th>軟化点 (℃)</th>
<th>部 類</th>
<th>X</th>
<th>σ₋₋₋</th>
<th>CV (％)</th>
<th>CV 平均 (％)</th>
<th>X</th>
<th>σ₋₋₋</th>
<th>CV (％)</th>
<th>CV 平均 (％)</th>
</tr>
</thead>
<tbody>
<tr>
<td>生 アスファルト</td>
<td>針入度 30—100</td>
<td>82.3</td>
<td>5.0</td>
<td>Cᵥ₂ 6.1</td>
<td>Cᵥ₂ 9</td>
<td>48.4</td>
<td>6.9</td>
<td>1.9</td>
<td>Cᵥ₁ 1.9</td>
<td>Cᵥ₂ 9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>軟化点 60—80</td>
<td>60.0</td>
<td>4.9</td>
<td>8.1</td>
<td>7.1</td>
<td>49.8</td>
<td>6.9</td>
<td>1.8</td>
<td>Cᵥ₁ 1.8</td>
<td>Cᵥ₂ 9</td>
<td>Cᵥ₁ 1.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>軟化点 B 20—40</td>
<td>28.2</td>
<td>2.5</td>
<td>9.0</td>
<td>9.0</td>
<td>56.8</td>
<td>6.9</td>
<td>1.6</td>
<td>Cᵥ₁ 1.6</td>
<td>Cᵥ₂ 9</td>
<td>Cᵥ₁ 1.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>回収アスファルト</td>
<td>針入度 30—100</td>
<td>68.2</td>
<td>6.3</td>
<td>Cᵥ₂ 9.2</td>
<td>Cᵥ₂ 9</td>
<td>48.7</td>
<td>1.0</td>
<td>Cᵥ₁ 2.0</td>
<td>Cᵥ₂ 9</td>
<td>Cᵥ₁ 1.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>軟化点 60—80</td>
<td>68.4</td>
<td>6.1</td>
<td>9.2</td>
<td>9.2</td>
<td>49.2</td>
<td>1.4</td>
<td>2.9</td>
<td>Cᵥ₁ 2.9</td>
<td>Cᵥ₂ 9</td>
<td>Cᵥ₁ 1.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>軟化点 B 20—40</td>
<td>28.2</td>
<td>2.5</td>
<td>9.0</td>
<td>9.0</td>
<td>56.8</td>
<td>6.9</td>
<td>1.6</td>
<td>Cᵥ₁ 1.6</td>
<td>Cᵥ₂ 9</td>
<td>Cᵥ₁ 1.9</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
5. 蒸留試験条件について

蒸留試験のうち、とくに回収結果に影響を与える条件は温度管理とそれに伴う時間的要素と思われる。共通試験で設定した温度管理条件と各機関の独自法による管理の結果を示すため図 - 6 および図 - 7 のとおりである。

共通試験の管理状態は多少のバラツキはあるものの、概ね良好に管理されていると考えられる。一方、独自法の場合は、とくに蒸留時間に大きなバラツキが見られる。この点の影響を調べるため、溜下開始から終了までの時間と 160 ℃に達してから終了までの時間の長さに対する補正後針入度について検討した。

図 - 6 蒸留温度管理図（共通試験）

図 - 7 蒸留温度管理図（各機関独自の方法）

6. アスファルト回収試験の標準化へ向けた

アスファルトの回収試験方法の確立のため、共通試験により検討を行って来たが、以上に示したように、針入度および軟化点のバラツキが大きく、回収試験精度を議論する以前の問題として、これらの試験方法自体各機関間の精度が問題となった。

しかし、各機関でのプランクトテストではほぼ問題ないこと、また、各機関が従来から独自の方法として実施してきた方法では、比較的変動係数が小さいこと（補正後で針入度は CV = 6.7 ％）、共通試験の設定条件での変動係数はこれよりもやや大きいが（補正後で 10.8 ％）、慣れれば独自法と同程度の精度が期待されることなどを勘案した場合、回収試験を標準化することは十分意義があると考えられた。

そこで、当面実施できるアスファルト回収方法の標準案として、共通試験条件を踏えてとりまとめることとなったが、ここでは、前記委員会でとりまとめた（案）の概要を以下に示す。

Vol. 29 No. 147 (1986年) 37
アスファルト回収試験方法（案）概要

1. 適用範囲
   あらかじめ、アスファルト混合物から抽出した溶液より、アスファルトを回収する方法について規定。

2. 試験機器
   (1) 抽出器  図-9に示すASTM D762（アプソン法）のものを使用。
   (2) 遠心分離機と遠心管 770G以上の遠心力が得られるもの。容量250ml以上の遠心管を4本以上有するバッチタイプの遠心分離機を用いる。
   (3) 蒸留装置  図-10に示すもの。
      ①蒸留フラスコ 500ml容量のもの（図-1）。
      ②ガラス管 内径10mmの耐熱ガラス製。
      ③CO₂吹込み管 長さ180mm以上、外径6mm、先端が径10mmの球状をもち、1.5mmの孔6個を有するもの。
      ④ヒーター マントルヒーター等
      ⑤冷却管 長さ200mm以上のウォータージャケットを有するもの。
   ⑥ガス流量計 1000ml/分まで測定可のもの。
   ⑦温度計 0～300℃、1度目盛の水銀温度計。

3. 試薬、炭酸ガス
   (1) 炭酸ガス 液化炭酸ガス
   (2) 溶剤 試薬1級または特級トリクロロエチレン

4. 試料
   (1) 回収アスファルト量 80～120g目標。
   (2) 解きはくし 110℃以下の恒温炉で加熱し、30分以内に解きはくす。
   (注) 加熱時はアルミ箔で包むとよい。
   (3) 溶剤容量 350～400ml。
5. 蒸留手順
(1) 所要時間　抽出から回収終了まで8時間以内。
(2) 水分の分離　遠心分離機で770 G以上の遠心力を30分以上かける。
(注) 回収液の全量（350～400 ml）を使用。
(3) 装置の組立て　抽出装置を蒸留フラスコに入れて図-10のように組立る。CO₂を吹込みまではCO₂管を液面より上にセットし、ゴム管の一端は閉じておく。
(注) 蒸留フラスコ上部はガラスウール等で覆い、放熱を防ぐ。
(4) 加熱　流出初期の滴下が毎秒2～3滴になるようにヒーターを調節する。
(注) 安定防止のため、沸石等を用いるといい。
(5) CO₂の吹込み　135℃に達したらCO₂管を底に触れる程度に下げ、初めは所定の100 ml／分に調節してCO₂を吹込み。157～160℃に達したら、CO₂流量を約900 ml／分に増し、この流量を保つしながら160～166℃に保つ。
(6) 蒸留の終点　15分経過、冷却器から溶剤の滴下があるときは、更に5分間CO₂吹込みを継続した後、CO₂吹込みを止め、終了する。

(注) 蒸留装置の蒸留から終了までの所要時間は60～80分を目標とする。

6. 回収アスファルトの試験
回収アスファルト試験は引き続き諸試験に供するのを原則とするが、やむを得ない場合は一旦容器に移して冷却し、試験を行うときに再加熱して用いる。

7. あとがき
以上に示したアスファルト抽出・回収試験方法（案）は、当面適用できる方法といべきものであり、試験条件をできるだけ単純化した方法を指向している。しかし、本案で十分であるとの立場にはなく、幾つかの問題点もかかえている。
たとえば、現ASTM D 1856では操作中的アスファルト劣化に対処するため冷抽出法を採用したり、保管や解きほぐし中の酸化抑制等に気を配っている。本案では、その辺りの取扱いは不十分な形となっているが、今後の検討課題として残されるよう。
今後、本方法を適用してみて、種々の御批判を頂ければ幸いである。なお、アスファルト抽出・回収試験方法については、本案とは別に、現在（社）石油学会製品部会Aスファルト分科会の方で、専門委員会を設けてアスファルト抽出・回収試験方法について検討しており、いずれ発表されるものと思われる。

砂利道の歴青路面処理指針（59年版）増刷
第2刷　B 5 判・64ページ・実費価格 400 円（送料実費）
平坦性試験

1. まえがき
平坦性試験は、車両の走行における快適性の評価や舗装工事の品質管理試験などに用いられており、種々の測定方法がある。日本道路公団では、舗装工事における平坦性の評価は、8mプロフィルメータによって行なうこととしている。しかし、舗装の修繕工事では測定作業上の安全性や装置の規模等からこの方法を適用することには問題が多いことが指摘されている。このため、3mプロフィルメータが適用することのない3mプロフィルメータの高速道路の舗装修繕工事への適用に関する検討を早急に行なう必要がある。

本報文では、わが国で行なわれているいくつかの平坦性試験の概要を文献等から調査したのち、特に3mプロフィルメータを高速道路の舗装修繕工事の品質管理試験として適用したものとあきらかに問題点について検討を行なった。

2. わが国における平坦性試験
ここでは、わが国で実施されている平坦性試験についてその概要を紹介し、高速道路の舗装修繕工事への適用を前提としたときの問題点を整理してみる。

2－1 平坦性試験の概要
(1) 3mプロフィルメータによる方法
測定装置は図-1のようすで、測定機械が3mあり、並行の足の部分に多数の車輪をつけたもので、人力によるけん引方式である。その原理は、各基準輪に対する測定輪の高さが算術平均されて、ビームの中心（測定輪の位置）における基準高さとなり、この基準輪に対する測定輪の上下変動を記録紙に記録する。記録されたデータから、1.5m間隔に、任意に設定した基準線をもとに、被測定物表面の平坦度を測定する方法である。
(2) 8mプロフィルメータによる方法
この測定装置の原理は3mプロフィルメータと同様であるが、図-2に示したようすで測定機械が8mと重い。車によってけん引するので、高速道路のような長距離区間を測定するのに適している。この測定器で得られたデータの解析は、Prf（Profile Index）とTCR（Total Cumulative Roughness）の2通りの方法がある。Prfは記録紙の中心付近に6mmバッドをあて、バッドの外側にはみどりの頂部と底部の距離を加算し、これを区間距離を除して求める。TCRは測定輪の下方側測定幅を2倍した値を区間距離で除した値である。日本道路公団では、PrfとTCRの算出には、原則として区間距離を200mとしている。
(3) 高速プロフィルメータによる方法
高速プロフィルメータには第5輪として測定輪を設け、路面の凹凸量を直接測定する方法と、レーザ変位計等に

* のがみ こうじ 日本道路公団技術部道路試験課　** みや ひろみつ 世紀工学工業株式技術研究所
より非接触で測定する方法がある。昭和59年度の建設技術評価制度の開発課題としてとりあげられたこともあり、最適では非接触型のものが多く用いられるようになっているが、これらはいずれも3mプロフィルレータによって得られるσ₃ₘが計測される機構となっている。

写真－1にはこの高速プロフィルメータの例を示した。

表-1 σ₃ₘの解析における要因と因子

| 要因 | 因果 | 子
|------|------|------
| 工種 | オーバーレイ, 切削オーバーレイ, 路上表面再生 |
| 交通規制 | 一車線, 対面, 全面閉鎖, 交互, 全て |
| 施工位置 | 走行（1, 2）, 追越, 全て |
| 測定位置 | O, W, P, B, W, P, 全て |
| 設計厚さ | 3.0cm以下, 3.1〜4.0cm, 4.1〜5.8cm, 全て |
| 日当りの | 施工延長 |
| 道路種別 | 高速道路, 一般有料 |

2-2 高速道路への適用上の問題

前述の平坦性の評価方法を対象に、高速道路における維持修繕工事の施工管理試験への適用を検討すると、次のようになる。

(1) 3mプロフィルメータによる方法

人力によって測定するため、他の方法よりも測定効率が低い。しかし、維持修繕工事の施工距離が短縮されることが多く、測定効率の低さは問題にならない。

(2) 8mプロフィルメータによる方法

特に交通量が多い路線では、測定器が大型のため、組立で解体の作業あるいは測定作業の安全性に問題がある。使用する頻度が少ない最大の原因はここにある。

(3) 高速プロフィルメータによる方法

高速走行における平坦性の評価や測定作業の安全性からすると、最適な方法である。しかし、計測車が高価であるため、安価で簡単な測定器を用いる施工管理試験に適用することは、妥当ではない。

以上のことから、施工管理試験に用いる条件が具備されている3mプロフィルメータを用いた測定方法が適当と考えられる。

3. 高速道路の舗装修繕工事における平坦性

日本道路公団では、管理する道路を対象に、昭和58年8月から10月までの維持修繕工事における施工前後の平坦性を、3mプロフィルメータによって調査した。調査工事数は、高速道路が28工事、一般有料道路が7工事である。調査距離は131kmであり、そのうち高速道路は全体の89%、一般有料道路は11%である。また、適用された修繕工法は、図-3に示したとおり、切削オーバーレイがほとんどである。

図-3 工種別調査距離

この調査から得られた修繕前後のσ₃ₘは、表-1に示す要因と因子によって解析したが、ここではこの解析結果のうち高速道路に関連するものについて、以下にその概要を紹介することにする。

(1) 修繕工事前後の平坦性(σ₃ₘ)

図-4は、修繕工事前後の平坦性(σ₃ₘ)を示したものである。なお、最近の高速道路の舗装の修繕原因の大
部分は工事前の平坦度（σ₃m）を分布

（a）修繕前の
平均値 = 1.56
標準偏差 = 0.62
データ数 = 512

（b）修繕後の
平均値 = 0.78
標準偏差 = 0.21
データ数 = 512

図-4 修繕工事前の平坦性（σ₃m）の分布

また，施工後のσ₃mの最小値は0.25mm程度である。
この値は現在の平坦性を改善する施工技術の限界値とも考えられる。

表層再生は他の工法に比べ，特異な値を示したが，データ数が少ないこともあり，今後の検討が必要である。
（3）日当り施工延長と平坦性（σ₃m）
図-6 は，オーバーレイと切削オーバーレイの日当り施工延長とσ₃mの関係を示したものである。図から日当り施工延長が長くなると，σ₃mは小さくなる傾向が若干みられる。

（4）測定位置とσ₃m
図-7 は，修繕後の外側わだち部（O.W.P）と車線中

表-2  程度によるσ₃mの相関

<table>
<thead>
<tr>
<th>工程</th>
<th>項目</th>
<th>施工前のσ₃m（mm）</th>
<th>施工後のσ₃m（mm）</th>
<th>速や管率（×10⁻²％）</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>高速道路</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>オーバーレイ</td>
<td>132</td>
<td>1.531</td>
<td>0.585</td>
<td>3.080</td>
</tr>
<tr>
<td>切削オーバーレイ</td>
<td>380</td>
<td>1.571</td>
<td>0.634</td>
<td>4.114</td>
</tr>
<tr>
<td>路上表層再生</td>
<td>16</td>
<td>0.825</td>
<td>0.222</td>
<td>1.436</td>
</tr>
</tbody>
</table>
図-7 O.W.PとB.W.Pにおけるσ₃ₙ

4. その他の平坦性評価値とσ₃ₙとの比較

ここでは、3mプロフィルメーターによって得られるσ₃ₙとその他の平坦性の評価値との関係について、過去の文献をもとに若干の考察を加えてみる。

4-1 乗心地係数

平坦性の評価方法には、3mや8mのプロフィルメーターを用いる方法のように路面と基準面の高低差を測定するもののほか、車に搭乗した者が感じる乗心地を加速度等として計測する方法もある。この乗心地とσ₃ₙとの関係を図-8に示す一般道路（時速40km）の資料9により検討することにする。

前述した実態調査によれば、高速道路における修繕工事後のσ₃ₙの値は0.8であり、この値に対応する乗心地係数を求めるためには、時速40kmと100kmの乗心地係数を求め、その比率（100km/hの乗心地係数/40km/hの乗心地係数＝1.9）をもとに換算すると、時速40kmでの乗心地係数2は時速100kmで3.8となる。この推定値は、基準から提案する路面評価区分7（0〜5が良、5〜10が可、10以上が不可）によると、良い範囲に入ると。

以上のよう推定すると、σ₃ₙが0.8〜0.9mmを示す路面では、高速走行しても良好な乗心地を呈することになるが、今後はσ₃ₙと乗心地の関係を調査して、上述の値を確認する必要がある。

図-8 乗心地係数とσ₃ₙの関係

図-9 車種別速度別乗心地係数

式が得られる。

乗心地係数 = 8.1 × 10⁻² 速度 + 2.16 (r = 0.968)

この式から、時速40kmと100kmの乗心地係数を求め、その比率（100km/hの乗心地係数/40km/hの乗心地係数＝1.9）をもとに換算すると、時速40kmでの乗心地係数2は時速100kmで3.8となる。この推定値は、基準から提案する路面評価区分7（0〜5が良、5〜10が可、10以上が不可）によると、良い範囲に入る。

以上のよう推定すると、σ₃ₙが0.8〜0.9mmを示す路面では、高速走行しても良好な乗心地を呈することになるが、今後はσ₃ₙと乗心地の関係を調査して、上述の値を確認する必要がある。

図-7 O.W.PとB.W.Pにおけるσ₃ₙ

図-7 O.W.PとB.W.Pにおけるσ₃ₙの関係を示すものである。図によれば、乗心地係数は車種により異なる他、その速度により著しく変化することが明らかである。すなわち、速度が増加すれば乗心地係数が増加し乗心地が悪化していく傾向がある。ここでは、前記により得られた修繕工事後の乗心地係数2（これは40km/hでの値である）が高速時（100km/h）でのどの程度になるかを図-9の関係を用いて推定することとした。図のうち、⑥の車の乗心地係数と速度の関係を求めるとき、(1)
4-2 交通振動

通行する車両によって生じる交通振動から、路面を評価したものとして、土木研究所と東京都の報告に砕がある。図-10は、このうち一般国道における維持修繕工事の施工前後の交通振動とσ₃ₘの関係を示したものである。図からσ₃ₘの平均である0.8～0.9 mmに相当する交通振動を求めると、最大でも50dB未満となる。この値は、振動規制法にもとづいた限度値を十分に満足するものであり、交通振動の点からの問題は少ないものと考えられる。

図-10 路面補修工事前後の平坦性と振動レベル
（一般国道の例）

4-3 8mプロフィルメータの値

中央自動車道における新設工事（2箇所）の表面、基層とアスファルト安定処理路盤で測定した8mと3mのプロフィルメータから得られたデータをもとに、PrI、TCR、σ₈ₘ（8mプロフィルメータのデータから求めた標準偏差）とσ₃ₘの関係を求めると図-11のとおりとなる。PrIとσ₃ₘの関係は(2)式のとおりとなった。

\[ \sigma_{3m} = 2.52 \times 10^{-2} \text{PrI} + 0.58 \] (r = 0.748) \hspace{1cm} (2)

なお、このデータから、維持修繕工事では測定することが少ないと思われる路盤のデータを除き、PrIとσ₃ₘの関係を求めると(3)式となる。

\[ \sigma_{3m} = 2.99 \times 10^{-2} \text{PrI} + 0.47 \] (r = 0.549) \hspace{1cm} (3)

つぎに既往の文献で、PrIとσ₃ₘの関係を調べた。高速道路調査会の報告(11)(12)には、(4)式と(5)式があり、松崎らの報告(13)に(6)式がある。

### 表-3 8mと3mのプロフィルメータによる各測定値間の関係

<table>
<thead>
<tr>
<th>No</th>
<th>値の組合せ</th>
<th>相関係数</th>
<th>1次回帰式</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PrI δ₃ₘ</td>
<td>0.748</td>
<td>δ₃ₘ = 2.52 \times 10^{-2} \text{PrI} + 0.58</td>
</tr>
<tr>
<td>2</td>
<td>δ₈ₘ δ₃ₘ</td>
<td>0.831</td>
<td>δ₃ₘ = 0.45δ₈ₘ + 0.22</td>
</tr>
<tr>
<td>3</td>
<td>TCR δ₃ₘ</td>
<td>0.713</td>
<td>δ₃ₘ = 0.952 \times 10^{-2} \text{TCR} + 0.59</td>
</tr>
<tr>
<td>4</td>
<td>PrI δ₈ₘ</td>
<td>0.890</td>
<td>δ₃ₘ = 5.54 \times 10^{-2} \text{PrI} + 0.80</td>
</tr>
<tr>
<td>5</td>
<td>PrI TCR</td>
<td>0.917</td>
<td>TCR = 2.31 \text{PrI} + 1.619</td>
</tr>
</tbody>
</table>

PrI = 30σ₃ₘ - 15.0 \hspace{1cm} (4)
PrI = 43σ₃ₘ - 12 \hspace{1cm} (5)
PrI = 30.24σ₃ₘ - 17.24 (r = 0.948) \hspace{1cm} (6)

図-11は、(2)式～(6)式の関係を図示したものである。図によれば、各報告毎にそれぞれσ₃ₘとPrIの関係が異なることが明らかである。

図-11 PrIとσ₃ₘの関係式

一方、前述2によればPrIとσ₃ₘは平坦性の一つの評価値でありながら、それぞれその測定ならびに算出の手法が異っていることも明らかである。

以上のようなことからPrIとσ₃ₘの間には、定常的な相関は見られるものの定量的な関係を見いだすことができず、σ₃ₘを換算してPrIとして用いることは適当でないと判断される。

5. 高速道路に適用する3mプロフィルメータによる試験法

高速道路における舗装修繕後のσ₃ₘは、前項までの検
討によれば乗心地係数や交通振動の観点から問題ないものと判断される。そこで、高速度における平坦性の評価が\( \sigma_{3m} \)で可能と判断し、KODAN220「8mプロフィルメータによる路面凹凸測定方法」とアスファルト舗装要綱の「路面の平坦性試験」をもとに高速度の維持修繕工事に適用する試験法を検討した。その結果表-4に示す平坦性試験法を提案することができた。ここではこの試験法の設定にあたって検討した事項をとまとめめる。

(1) プロフィルメータ

わが国で製造、使用された3mプロフィルメータは、

表 - 4 3mプロフィルメータによる路面凹凸測定方法

| 1. 使用範囲 | この試験方法は、3mプロフィルメータを用いて走行方向の路面凹凸を測定し、解析する場合に設定する。
| 2. 試験用具 | 3mプロフィルメータは、両端に各々4個の基準車輪およびフレーム固定車輪、記録紙より構成されたもの。
| 3. 測定方法 | 3.1 測定位置 車両の走行する外側線から75cm〜100 cm内側の車輪通過幅の最も高い位置を選ぶ。なお、地デジ2車両道路においては車両通過幅の最も高い位置を選ぶ。
| 3.2 走行速度 測定速度は、3 km/hrを標準とする。
| 3.3 測定係数 測定係数は走行方向1/100、上下方向1/10とする。なお、走行方向や上下方向の測定の精度については、測定前にチェックをしておくなければならない。
| 3.4 測定時の記録 測定の際、キャリブレーション、築造、トンネル、カルバートおよび構架、高架の伸縮側、補修所、びび割れ発生箇所の位置を記録紙に記入する。
| 3.5 データの解析 | 記録紙より1.5 mごとに値を読み取り、原則として150 mを1区間距離として、その標準偏差を求める。標準偏差を求める手順はつきのとおり行う。

(1) 区間ごとの測定値を6〜10個まとめて平均値のグループに分け、(2) 区間ごとの各グループの範囲(R)を加え、グループ数を除して範囲の平均値(R)を計算する。

(4) 標準偏差は次式により算出する。

\[
\sigma = \frac{R}{C}
\]

\( \sigma \)：標準偏差

\( R \)：範囲の平均値

\( C \)：定数(1)

注(1)：Cは、1グループ内の測定値の数によってきまる定数で、あって、表 - 1に示す。

表 - 1 Cの値

<table>
<thead>
<tr>
<th>グループの大きさ</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>2.53</td>
</tr>
<tr>
<td>7</td>
<td>2.70</td>
</tr>
<tr>
<td>8</td>
<td>2.82</td>
</tr>
<tr>
<td>9</td>
<td>2.92</td>
</tr>
<tr>
<td>10</td>
<td>3.03</td>
</tr>
</tbody>
</table>

写真 - 2 3mプロフィルメータ

＜写真 - 2 3mプロフィルメータ＞

ある。現在の使用状況は、4輪式はほとんど使用されておらず、8輪式が広く普及しており、16輪式は一部で使用されている。各型式から得られた\( \sigma_{3m} \)の関係を示す報告がないので、入手した8輪式と16輪式のプロフィルメータを用いて、日本道路公団試験所周辺の町田市道で、その関係を調べた。その結果を表 - 5に示したが、これによれば有意な差は認められなかった。

表 - 5 8輪式と16輪式の\( \sigma_{3m} \)

<table>
<thead>
<tr>
<th>周辺</th>
<th>195m</th>
<th>525m</th>
</tr>
</thead>
<tbody>
<tr>
<td>8輪式</td>
<td>2060</td>
<td>2048</td>
</tr>
<tr>
<td>16輪式</td>
<td>2055</td>
<td>2069</td>
</tr>
</tbody>
</table>


したがって、現在の使用状況や8輪式と16輪式の検証結果から、種類は8輪（両端に各々4個）以上の車輪で構成されているプロフィルメータとした。

(2) 測定位置

O.W.Pで測定した値は、B.W.Pの値よりも大きくなる調査結果や車の走行位置が現実的であることから、測定位置はO.W.Pと定めた。
(3) 区間距離

前記 3 の実態調査のデータをもとに、区間距離 45m、90m、180m、270m に分割して、各々の区間距離における σ₃m の平均と標準偏差を求め、この結果を図-12 に示した。図によれば、区間距離が長くなるに従い標準偏差が小さくなるが、これが約 150m を越えると標準偏差の変動が少なくなることがわかる。このようなことから、σ₃m の算出に適用する区間距離は 150m と定めた。

(4) 測定間隔

土木研究所構内にあるアスファルトとコンクリートの舗装の同一箇所（100m）で、測定間隔を 0.3m、0.9m、1.5m の 3 段階に変えて σ₃m を 3 回求めたところ、0.3m と 1.5m の間には、統計的な有意差がないとの報告14) がある。したがって、測定間隔は 1.5m とした。

(5) σ₃m（標準偏差）の計算方法

計算方法には、測定値を累計して標準偏差を求める方法を、測定値をグループにわけ、そのグループの範囲を定数で除して、標準偏差を求める方法がある。

しかし、各々の方法から求めた標準偏差には、ほとんど差がないとの報告14) もあり、簡便性を考慮して後者の測定値をグループにわける方法を採用した。

6．あとがき

舗装の平坦性の定量化手法は、路面の管理および新設や修繕工事における品質管理などの段階毎にその条件や要求される事柄が異なるため、これに応じた手法でなければならない。本稿文では、3m プロフィルメータによ

＜参考文献＞

1) 日本道路公団：日本道路公団試験方法、1985.10
2) 深沢：供用中の調査、ASPHALT、vol.29、No.144、(1985)
3) 古郷、野上：高速道路における路上表層再生工法、ASPHALT、vol.29、No.146、(1986)
4) 日本道路公団：技術情報、第63号、1982.7
5) 日本道路協会：路面性能の基準に関する調査報告書、昭和49年 3月
6) 市原ら：路面の凹凸、技術書院
7) 兵原ら：路面の凹凸と乗心地係数について（その 1）、土木技術資料 vol.18、No.7、1966
8) 成田ら：道路交通振動予測式、土木技術資料 vol.120、No.6、1978
9) 速下ら：重交通都市道路舗装の維持管理、昭和56年 5月、舗装
10) 渡辺ら：交通工学（新訂版）、国民科学社
11) 高速道路調査会：補装補修基準に関する研究報告書、昭和43年度
12) 高速道路調査会：路面評価と交通荷重に関する調査報告書、昭和45年 3月
13) 松崎ら：良好な路面における平坦性の再評価方法、昭和55年11月、道路建設
14) 河野：竣工時の舗装の平坦性検査について（1）、土木技術資料 vol.9、No.4、1967

46
アスファルトの品質試験
～各国の品質試験と供用性について～

伊藤正秀*

1. まえがき
現在、我が国で使用されている道路用ストレートアスファルト（以下、ストアスという）はアスファルト舗装を含む（以下、舗装という）の規定に従うこととなっている。舗装のストアスの品質規格は、昭和25年版の要綱で初めて制定され、その後幾度かの改訂を受けて現在の形となった。しかし、個々の品質の規定について考えた場合、それらの規定は必ずしも舗装の供用性と対応しているとは言い難い。一方、近年の交通の増大化、重量化により、供用性、耐久性に優れた舗装というものが求められるようになってきている。このような要望に対する努力はアスファルトの改良を中心として各方面で行われているが、今一つ、その結果は満足すべきものとはいえないのである。これについては様々な理由を考えられるが、特に舗装の供用性とアスファルトの品質規格の関係の問題は大きな要因と考えられる。このような状況から、舗装の供用性、耐久性の向上には、どのような品質を持ったアスファルトが望ましいのかということを明らかにすることがますます求められるよう。

折しも(社)アスファルト協会において、舗装技術委員会品質・試験法分科会（牛尾俊介分科会長）の下、この問題について積極的に議論し、ある程度の結論が得られたので、その概要について今回報告したい。本文で述べる内容は、特にストアスについて既存の文献等に基づいて各方面の舗装技術者が討議した結果であって、その詳細については各種の表証試験が必要とされるが、前述の問題について何らかの方向を示すものとして有用であろうと思われる。

2. 品質・試験法分科会の概要
品質・試験法分科会は道路用アスファルト、特にストアスについて、より適確な規格・試験項目を目指して、我が国をはじめ各国の規格の背景を探り、現行の規格・試験方法の検討・改善策の提案を行うことを目的として、昭和60年6月に設立された。分科会は、役所、石油会社、道路会社等の各方面の舗装技術者によって構成されており、設立の趣旨に沿って精力的な活動を行っている。特に、9月までの3ヶ月間は、現在の各国のストアスの規格項目について、その性格および重要度の分類、また、舗装に要求される性能としてのストアスの試験項目の整理を行った。

現在もこれらの問題についてさらに掘り下げた議論を行っている。今後は実際に試験を行い、その結果を踏まえての議論、およびストアス以外のアスファルトについてもその試験項目の検討を行う予定である。

3. 各国のストレートアスファルト品質試験とその分類
舗装の供用性とアスファルトの性状の関係を論じる前に、まず諸外国のストアスに関する品質試験をピックアップし、それらの整理を行った。ここでは、アメリカとイタリア、その他の国についての議論があげられている。アメリカについては各州独自の規格があるため、ここではASTM（American Standard for Testing and Materials）規格とAASHTO（American Association of State Highways and Transportation Officials）規格のものに絞った。なお、試験の方法として規定されているが、品質規格としては規定されていない試験についても一部含まれてある。各国の品質規格そのものや規格値については他の文献を参照されたい。これらの試験項目を各々の試験の性格により分類したものが表-1である。以下に各項目について触れる。

1) コンシンセア
まず針入度、軟化点、60℃粘度をコンシンセアを表すものとして分類した。ただし一般的にコンシンセアという場合、それは針入度であると受けとめられることが多いが、ここではもう少し広い意味範囲、すな
<table>
<thead>
<tr>
<th>試験の性格</th>
<th>試験項目</th>
<th>日本</th>
<th>アメリカ</th>
<th>イギリス</th>
<th>ドイツ</th>
<th>カナダ</th>
<th>フランス</th>
<th>国際標準化機関</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>JIS</td>
<td>ASTM</td>
<td>AASHTO</td>
<td>BS</td>
<td>IP</td>
<td>DIN</td>
<td>各州 (ASTM)</td>
</tr>
<tr>
<td>コンシス</td>
<td>針入度</td>
<td>K 2207</td>
<td>D 5</td>
<td>T 49</td>
<td>4691</td>
<td>49</td>
<td>52010</td>
<td>D 5</td>
</tr>
<tr>
<td>テンシー</td>
<td>軟化点</td>
<td>K 2207</td>
<td>D 36</td>
<td>4692</td>
<td>58</td>
<td>52011</td>
<td>66008</td>
<td></td>
</tr>
<tr>
<td>粘性</td>
<td>60℃絶対粘度</td>
<td>D 2171</td>
<td>T 202</td>
<td>D 2171</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>純度</td>
<td>135℃粘度</td>
<td>D 2170</td>
<td>T 201</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>高温動粘度</td>
<td>K 2207</td>
<td>319</td>
<td>D 2170</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>セイボルトフロー秒</td>
<td>K 2207</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>純度</td>
<td>三塩化エタン可溶分</td>
<td>K 2207</td>
<td>47</td>
<td>5214</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>三塩化エチレン可溶分</td>
<td>D 2042</td>
<td>T 44</td>
<td>4690</td>
<td>D 2042</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>四塩化炭素可溶分</td>
<td>66012</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>水分</td>
<td>T 55</td>
<td>D 95</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>灰分</td>
<td>52005</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>安全性</td>
<td>引火点</td>
<td>K 2207</td>
<td>D 92</td>
<td>T 48</td>
<td>4689</td>
<td>36</td>
<td>D 92</td>
<td>60118</td>
</tr>
<tr>
<td>耐熱劣化</td>
<td>蒸発試験（針入度変化，質量変化）</td>
<td>K 2207</td>
<td>D 6</td>
<td>2000</td>
<td>52016</td>
<td>66011</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>薄膜加熱試験</td>
<td>K 2207</td>
<td>D 1754</td>
<td>T 179</td>
<td>52017</td>
<td>D 1754</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>回転式薄膜加熱試験</td>
<td>K 2207</td>
<td>2872</td>
<td>T 240</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>比重</td>
<td>比重</td>
<td>K 2207</td>
<td>D 70</td>
<td>5093</td>
<td>190</td>
<td>52004</td>
<td>66007</td>
<td>DIS 3838</td>
</tr>
<tr>
<td>相容性</td>
<td>蒸発試験（針入度比）</td>
<td>K 2207</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>コロイドの</td>
<td>スポットテスト</td>
<td>T 102</td>
<td>AASHTO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>安定性</td>
<td>低温性状</td>
<td>K 2207</td>
<td>52012</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>フラース脆化点</td>
<td>K 2207</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>延性</td>
<td>伸度</td>
<td>K 2207</td>
<td>D 113</td>
<td>T 51</td>
<td>4710</td>
<td>52013</td>
<td>D 113</td>
<td>66006</td>
</tr>
<tr>
<td>成分</td>
<td>パラフィン含有量</td>
<td>52015</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>カラムクロマトグラフィによる組成分析</td>
<td>石油学会法</td>
<td>D 4124</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>付着性</td>
<td>はく離試験</td>
<td>砂粒要覧</td>
<td>石油学会</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
わち、補装の供用温度のうちアスファルトが粘性領域にあると考えられる状態での「硬さ」を表す用語として「コンステンシー」という表現を用いている。

針入度は常温でのコンステンシーを、後の2試験については実際の補装の供用中における最高温度付近におけるそれを示すものと考えられる。60°C粘度試験は主としてアメリカで規格として採用されている試験であり、我が国でもセイボールフロール試験に及ぼす影響の規格をはじめと規格として採用されて以来、次第にその意義についての認識が広まりつつある。2) 針入度や絞り点試験よりアスファルトのコンステンシーを変数のうちとせば適切ではないかとの声もあるが、過去の規格項目の経験や試験の手間等を考えると、その規格試験としての一般的な採用については今後の検討が必要であろう。

2) 粘性

我が国の高温動粘度試験、セイボールフロール試験、アメリカの135°C粘度はいずれも高温時の粘性を表すものと考えられる。我が国の高温動粘度試験（毛管式）およびセイボールフロール試験は温度4°K（120, 140, 160, 180°C）での測定となっている。この高温の粘度の測定条件における温度4°Kでは多すぎるという意見もあり、今後検討が必要であろう。

アメリカででの135°C粘度の規定は135°Cという温度が最も混合、補装に密接であること、これからなければ行われるものである。

3) 純度

三塩化エタン可溶分、三塩化エチレン可溶分、四塩化炭素可溶分試験はいずれも有機溶剤に不溶な不純物の程度を測る試験である。諸外国では三塩化エチレンが多く使われているが、我が国では毒性を考慮して三塩化エチレン可溶試験が規格試験として採用されている。

また水分試験は加熱した際の泡立ちや混合物への影響等を考慮して行っていると思われる。

なお灰分については前述のような可溶試験で十分であると思われ、その意義は薄い。

4) 安全性

火災点試験の本体の目的は火災に対する安全性である。

（47年暫定規格の制定の際には他の意義も認められた）3) 本試験は各国で品質規格として規定されているが、我が国では実際はすべてのアスファルトが合格している。

なお、火災や事故の程度はアスファルト中の軽質油分の量によるが、これは蒸発試験や薄膜加熱試験といった他の試験により判断できるのではないかという意見もある。本試験の意義については今後検討の余地がある。

5) 耐熱劣化

蒸発試験（針入度変化率、重量変化率）、薄膜加熱試験、回転式薄膜加熱試験、いずれも補装混合時の高温における劣化の程度を判断する試験と考えられる。耐熱劣化性、以前は蒸発試験による評価が中心だったが、現在では薄膜加熱試験によっているところが多い。我が国でも耐熱劣化性は、より条件の厳しい薄膜加熱試験で行われたと判断され、昭和47年の要綱のストア混調規格として採用された。4)5)6)

また回転式薄膜加熱試験はカリフォルニア州道路局で考案されたもので、回転するガラス容器の中にアスファルトを入れ、常にアスファルトの新しい面が熱に触れるようにしたもので、實際の混合条件により近い試験と言えているが、容器の温度等が安定こと、通常の薄膜試験でも実際の混合、補装等における劣化状態を十分に示していると考えられていることなどから、その普及は一部にとどまっている。

6) 比重

比重試験はアスファルト物質の理論密度を求めるために規定されている。

7) 相溶性

我が国特有の規定である蒸発後の針入度は試験はアスファルト中、軟質分含有の程度およびその分離の傾向（相溶性）を示すものである。アスファルト中には軟質分が多いと補装後のコアが崩れたくらいに、フラッシュしやすいまた貯蔵中の分離の防止等の理由で我が国では50年版要綱から規定された。3) しかし、本試験についても現在はすべての製品が合格するためその意義に対し疑問の声もある。

8) コロイドの安定性

AASHTO 規格に規定されているスポットテストはアスファルト中の中のコロイドの均質性を見るためにある。コロイドが均一でないとオイル分が混入しやすいため、耐久性に影響があると言われているが、混合物や供用性との関係は余りはっきりせず、AASHTO でもユーザーによる要求のあるときののみ実施する任意試験として規定されている。

9) 低温性状

フクラス脆化点試験は低温におけるアスファルトの脆化の程度を示す性質である。この試験法は DIN には品質規格として規定されている。しかし、標準が良くないことが問題である。供用性との対応が不明の理由から、我が国では試験方法は JIS に規定されているものの、ストアの品質規格としては规定されていない。
10) 延性

伸度試験は各国で規定されており、これはアスファルトの伸びやすさを示すものである。しかし、その詳細については、試験温度の違いや薄膜加熱条件の有無など各国によって差異がある。その意義については今一つ不明確という声があるものの、当該試験の普及の現状や適切な代替試験法がない等の理由から、本試験はこれからも規格として採用される。しかし、試験温度や薄膜加熱条件の有無等については、今後、検討の余地があると思われる。

11) 成分

パラフィン分試験と組み合わせた試験はアスファルトを単一の化合物に分けるものではないものの、化学的成分を評価する試験として位置づけられる。パラフィン分試験はその多くの供用性に影響を及ぼすと言われることもあり、DIN, BS, 等ヨーロッパの国において品質規格として規定されている。しかし、我が国ではその試験法上の問題、供用性等の関係が不明確等の理由から、時折研究的に行われているのみである。また、組成分析はリサイクル等の関係から最近、我が国でも関心を浴びてきている試験である。しかし、ストラスの規格としては、試験の手間や供用性との関係がはっきり不確実であるなどの理由により、そのまま規格として採用するには無理があるだろう。

12) 付着性

はくり試験は骨材との付着性を評価するものである。我が国においては特に必要のある場合について実施する旨、記述してあるものの、この試験は骨材の特性に影響されるため、アスファルトそのものの特性を必ずしも示すものではないといえる。

4. 鋸製の供用性とアスファルトの性質

4-1 鋸製の破壊現象とアスファルトの性質

前章ではストラスの品質試験をその性格により分類したが、次に「鋸製に要求される性能」という観点から検討すべき試験についてまとめたものを表-2に示す。この中で鋸製に要求される性能を、鋸製としての機能を維持するためには何が必要かという点から考え、大きく分けで①耐流動性、②耐びび割れ、③耐摩耗、④耐すべり、⑤耐はくりの5つに分類した。この他に、たわみ性、平坦性というものについても検討されたが、前者はその性質が適用できない場合には結果として流動およびびび割れという破壊現象として現われてくるし、一方、後者は耐流動性と密接に関連していると思われ、単独の性質としてこ
### 表-2 鋼架に要する性能とストレートアスファルトの試験項目

#### 補装の破壊現象を考慮したアスファルトの試験

<table>
<thead>
<tr>
<th>補装に要求される性能</th>
<th>評価項目</th>
<th>関連するアスファルトの性質</th>
<th>ストレートアスファルトの性状試験</th>
<th>アスファルト以外の関連要因</th>
</tr>
</thead>
<tbody>
<tr>
<td>耐流動</td>
<td>引張抵抗性</td>
<td>粘性</td>
<td>軟化点 60℃粘度</td>
<td>粒度 アスファルト量</td>
</tr>
<tr>
<td>耐び割れ</td>
<td>たわみ性（変形に対する追随性）</td>
<td>耐久性、粘性</td>
<td>薄膜加熱試験（針入度、質量変化）</td>
<td>粒度</td>
</tr>
<tr>
<td>耐摩耗</td>
<td>すりへり抵抗性</td>
<td>低温における骨材の把握力</td>
<td>すりへり抵抗性</td>
<td>骨材の質</td>
</tr>
</tbody>
</table>
| 耐すべき            | すべき抵抗性 | 骨材の把握力 | すべき抵抗性 | 骨材の質
| 耐はく裂            | 水浸におけるはく裂抵抗性 | 骨材の把握力 | 静的はく裂試験 | 骨材の質

#### 施工性を考慮したアスファルト試験

<table>
<thead>
<tr>
<th>区分</th>
<th>関連するアスファルトの性質</th>
<th>ストレートアスファルトの性状試験</th>
<th>アスファルト以外の関連要因</th>
</tr>
</thead>
<tbody>
<tr>
<td>貯蔵</td>
<td>耐熱劣化</td>
<td>蒸発試験（針入度比）</td>
<td></td>
</tr>
<tr>
<td>混合および補設</td>
<td>粘度</td>
<td>高温動粘度</td>
<td></td>
</tr>
<tr>
<td></td>
<td>耐熱劣化</td>
<td>薄膜加熱試験</td>
<td></td>
</tr>
<tr>
<td></td>
<td>安全性</td>
<td>引火点試験</td>
<td></td>
</tr>
</tbody>
</table>
いうことになろうが、それら以上に骨材の硬軟の影響が強くと思われる。アスファルトの注入度によって多少耐摩耗性が左右されるということはいえるが、やはり骨材や粒度の強さが強いといえる。低温時骨材把握力にとっては低温におけるタフネス・テクシディ試験のようなものが考えられるものの、実際にそのような試験を行うことは不可能と考えられ、アスファルトの試験としては適切なものは見当らない。

4) 耐すべり

これも前項同様にアスファルトの試験としてはとらえにくい。耐摩耗性やアスファルト以外の性質が強く影響するものと考えられる。

5) 耐はく性

はくりはポットホールや特にアスファルト層、基層では結合量の低下による耐荷力の減少という破壊形態となって表われる。特に水が介在する場合は特に抵抗性問題であり、現行では静的はく抵抗試験が考えられる。しかしこの試験はアスファルトそのものの性質よりも骨材の影響が強いということを考えておかなければならない。骨材の結合性についてはミクロ的な観点から界面状態等について検討することも考えられるが、これは非常に難しい問題である。

はくりの問題は、アスファルトの試験そのものよりも水浸ホイールラッピング試験のような混合物の試験と結びつけて考えて行くべきであろう。

4 - 2 施工性とアスファルトの性質

アスファルトの性質としては、耐荷の舗装の性能という面から要求されるものが最も重要であるが、一方で施工性というのも考慮されなければならない。ここでは①貯藏、②混合、舗装という二つの観点からとらえた。

1) 貯蔵

プラントケットルでの貯蔵中、アスファルトの性質は極力変化しないことが望ましい。貯蔵中の高温による劣化については、酸化などによる劣化よりも軟質分の分離の可能性が考えられる。この性質を判断するものとして、蒸発試験（針入度比）で挙げた。

2) 混合、舗装

混合、舗装時の温度、作業性に関連するものとしてアスファルトの粘度が考えられる。また、混合、舗装時にアスファルトの劣化が最も進むと言われ、これを判断するためのものとして薄膜加熱試験が必要であろう。また、現在ではさほど問題とはならないものの、引火に対する安全性を考慮して引火点試験は必要と思われる。

5、あとがき

以上品質試験法分科会での検討結果を中心にアスファルトの规格について述べた。冒頭にも記したように、あまりここで述べたことは既存の文献等に基づいて一つの方向として出した意見であって、その内容に対しては様々な議論があると思われる。読者の皆々の経験のない意見を戴ければ幸いである。最後に本分科会の活動に際して御協力を頂いた関係各位にこの紙面を借りて感謝の意を表す。

参考文献

1）井町弘光、「アスファルトの用途と品質」

アスファルト № 142（1986）

金谷重亮、「舗装用石油アスファルトの規格について」

舗装 1973年3月 他

2）（社）日本アスファルト協会

「セミプローチアスファルト」の開発（1984）

3）小島益平、「舗装用アスファルト舗装」

舗装 1980年5月

4）近藤紀し、「アスファルトの薄膜蒸発試験」

アスファルト №74（1970）

5）アスファルト小委員会

「舗装用石油アスファルトの規格改訂（暫定規格）」

道路 1972年9月

6）舗装委員会

「舗装に関する技術基準のとり扱いについて」

道路 1975年8月

7）建設省土木研究所舗装研究室

「試験道路における試験調査報告書」土木研究所資料 734号

8）高速道路調査会

「アスファルト舗装道路調査結果報告書」1976年

☆

☆

☆

☆

52

ASPHALT
アスファルト舗装技術研究グループ・第22回研究報告

「OECOのレポートから（2）」

今回はOECOのレポートから輸荷重の破壊作用について報告する。担当は吉村君（前田道路）、この欄の執筆は初めてである。なお、今回の吉村君と次回担当の中村君（日本道路公団）は、この春そろって結婚式を迎えるとのこと。独身者にとってこの欄は縁起がいいらしい。

もっとも、諸事多用の時期の執筆は大変であるが……。

さて、4乗則として知られる輸荷重の破壊作用は、AASHTO道路試験によってほぼ確立されたと言ってよい。わが国の構造設計法にも取り入れられていることは周知の事実であるが、AASHTO以後30年経過した現在、交通の質・量ともに変し、車両の大型化、重量化が顕著になってきている。OECOレポートは、この軽重問題に関して各国の実情をとりまとめたものであるが、吉村

君にはそれだけでなく、最近の研究も含めて紹介してもらった。また、今回より、簡単な内容紹介を冒頭に置くことにした。要旨の把握、要約、あるいは読むか飛ばすか（？）の判断材料に御利用いただきたい。

前号で紹介した「舗装管理システム」に関する最近の文献のまとめは、和文350ページほどになり、製本して日本アスファルト協会に保管しておく。閲覧自由ということがなされているので、興味のある方は協会の事務局に御連絡を……。研究グループでは、現在、この中の重要な論文を詳細に読み始めている。

（阿部顕政）

アスファルト舗装技術研究グループ

阿部顕政 日本大学理工学部土木工学科
阿部忠行 東京都土木技術研究所
荒井孝雄 日本舗装㈱技術研究所
安崎裕建設省土木研究所舗装研究室
飯田章夫 日本道路公社名古屋建設局企画調査課
池田拓哉 建設省土木研究所舗装研究室
井上武美 日本舗装㈱技術研究所
井上正 日通化学工業㈱技術研究所
大久保高秀 首都高速道路公社海岸線設計課
太田健二 日通化学工業㈱技術課
大坪義治 日通化学工業㈱関東営業所
亀田昭一 新東京国際空港公社
相野宏 日本大学理工学部土木工学科
古財武久 大成道路㈱技術研究所
児玉充生 シェル石油㈱技術研究所
佐藤喜久 鹿島道路㈱東京支店技術部

田井文夫 日本道路㈱技術研究所
溝瀬積 日本大学理工学部土木工学科
竹田敏憲 東京都第二建設事務所
田中輝栄 東京都土木技術研究所
谷口豊明 大林道路㈱技術研究所
丹治和裕 ㈱バスコ道路調査部
松木博 日本道路公社試験所土工試験室
中村州章 日本道路公社試験所舗装試験室
西沢典夫 大成道路㈱技術研究所
野々田充 日本道路㈱技術研究所
野村健一郎 大成道路㈱技術研究所
野村敏明 日通化学工業㈱北海道営業所
八谷好高 運輸省港湾技術研究所港湾施工研究所
羽山高義 日本舗装㈱工事開発部
姫野賢治 東京工業大学工学部土木工学科
吉村啓之 前田道路㈱技術研究所

Vol. 29 No. 147 (1986年)
大型货物自动車のインパクト
～OECDレポートより～

吉村 啓之*  

概要

本文はOECDレポートの「大型货物自動車のインパクト」を紹介するとともに、大型車が舗装の破壊に与える影響を検証した最近の研究成果をとりまとめたものである。内容は各国の大型車の重量化の実態について触れ、舗装の破壊に影響する要因として軸重、車軸のタイプ、軸配置などを取りあげている。また、大型車の重量化にもとづく舗装の維持修繕費の増大および荷重制限値の変更にともなる影響についても言及している。

1. はじめに

近年、大型货物自動車の走行は世界各国で顕著になっており、道路による货物輸送量が増加の一途をたどっている。それにともなう車両の重量化は舗装の破壊を著しく助長し、舗装の維持修繕費の急増をもたらす原因となっている。この問題に注目したOECD Road Researchグループは、大型货物自動車が各分野に与える影響の大きさをとりまとめ、1982年12月に "Impacts of Heavy Freight Vehicles" (以下、OECDレポートと呼ぶ) を発刊した。

本報告は大型货物自動車が舗装に及ぼす影響について、OECDレポートの内容を中心に紹介するとともに、最近10年間に発表された各種文献の研究成果をふまえ、著者なりに再構成してとりまとめたものである。

2. OECDレポートの内容

1977年にパリで開催された "Heavy Freight Vehicles and their Effects" のRoad Researchシンポジウムは、OECD諸国での大型貨物自動車の問題点を取りあげ、道路の安全性、交通流、舗装および橋梁への影響、環境問題、エネルギー問題、車両に関するコストなどを技術的にかつ経済的に評価する必要があることを指摘した。それを受け、OECD Road Researchグループは大型货物自動車に関する各国の最近の研究成果を収集して整理を行い、OECDレポートとしてまとめあげている。

このレポートは12章からなっており、各章の内容は次のとおりである。

1章 概要
2章 政策および科学技術－経済的な研究方法
3章 大型货物自動車の規模および役割－定義、法令、輸送形態、道路輸送の統計資料、最近の傾向
4章 道路交通流への影響－交通能力、走行速度、登坂車線の利用、渋滞
5章 道路の安全性への影響－事故の実態、要因分析、対策
6章 舗装への影響－舗装の設計および維持修繕の方法、車両特性値の影響、車両軸配置の影響、実験大試験舗装の研究
7章 道路橋への影響－設計方法、評価、車両重量の影響
8章 環境への影響－騒音、振動、大気汚染、社会・心理学的問題
9章 車両操作およびエネルギー問題－操作方法、生産性、過積載の問題、燃費
10章 費用への影響－車両操作費用、内部構造費用 (Infrastructure cost)、社会的費用
11章 最近の研究－西ドイツ、アメリカ、オーストラリア、イギリスの研究
12章 結論およびまとめ

3. 大型货物自動車の定義

わが国では道路を通行する車両は法令によって、車両総重量20t以下、軸重10t以下および輸荷重5t以下と定められている。また、車両はナンバープレートの頭数
字によって10車種に区分され、頭数字が1（普通貨物自動車）、2（乗合自動車）、8（特殊自動車）、9および0（大型特殊自動車）の車両を大型車として定義されている。

OECDレポートの「大型貨物自動車（Heavy Freight Vehicle）」は「総載荷能力が1.5t以上で、総重量が3.5t以上の車両」として定義されている。また、図-1はOECDレポートで取り扱う大型貨物自動車および車両の種類を示したものである。

図-1 大型貨物自動車および車両の種類

5. 過積載の問題

各国の道路輸送業界は輸送効率を上げるため、大型の貨物自動車を用い、貨物を最大限まで積載して輸送を行なっている。それにともなう車両の重量化は舗装の破壊を著しく助長するため、各国では車両の荷重制限を設定し、大型貨物自動車の過積載を法令によって防ぐとしている。

OECDレポートでは、各国内測定した車両重量の調査結果を報告している。表-4は車両の荷重制限を超えた過積載車の混入車を車種別にまとめたものである。表から、過積載車の混入車はトラックよりもトレーラーの方が高い傾向が認められる。また、その中でイタリアの研究は、車両の車数が多いほど過積載車の割合が高くな

表-1 各国の車両の制限値

<table>
<thead>
<tr>
<th>車種</th>
<th>国名</th>
<th>長さ（m）</th>
<th>幅（m）</th>
<th>軸重（t）</th>
<th>総重量（t）</th>
</tr>
</thead>
<tbody>
<tr>
<td>2輪</td>
<td>トラック</td>
<td>11.0</td>
<td>17.0</td>
<td>17.0</td>
<td>5.4</td>
</tr>
<tr>
<td>3輪</td>
<td>トラクター + セミトレーラー</td>
<td>12.0</td>
<td>16.0</td>
<td>18.0</td>
<td>10</td>
</tr>
<tr>
<td>4輪</td>
<td>トレーラー+フューチャ－</td>
<td>11.0</td>
<td>15.5</td>
<td>18.0</td>
<td>10</td>
</tr>
<tr>
<td>6輪</td>
<td>セミトレーラー</td>
<td>12.0</td>
<td>15.5</td>
<td>18.0</td>
<td>10</td>
</tr>
<tr>
<td>8輪</td>
<td>トラック</td>
<td>11.0</td>
<td>15.5</td>
<td>18.0</td>
<td>10</td>
</tr>
<tr>
<td>10輪</td>
<td>ツラックス+トレーラー</td>
<td>12.0</td>
<td>15.0</td>
<td>18.0</td>
<td>10</td>
</tr>
<tr>
<td>12輪</td>
<td>トレーラー</td>
<td>12.0</td>
<td>15.0</td>
<td>18.0</td>
<td>10</td>
</tr>
<tr>
<td>14輪</td>
<td>イタリア</td>
<td>12.0</td>
<td>15.5</td>
<td>18.0</td>
<td>12</td>
</tr>
<tr>
<td>16輪</td>
<td>日本</td>
<td>15.5</td>
<td>10</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>18輪</td>
<td>オーストラリア</td>
<td>11.0</td>
<td>15.5</td>
<td>18.0</td>
<td>10</td>
</tr>
<tr>
<td>20輪</td>
<td>スペイン</td>
<td>16.5</td>
<td>16.5</td>
<td>13</td>
<td>21</td>
</tr>
<tr>
<td>22輪</td>
<td>オランダ</td>
<td>16.0</td>
<td>24.0</td>
<td>24.0</td>
<td>10</td>
</tr>
<tr>
<td>24輪</td>
<td>スウェーデン</td>
<td>16.0</td>
<td>18.0</td>
<td>18.0</td>
<td>10</td>
</tr>
<tr>
<td>26輪</td>
<td>エジプト</td>
<td>15.0</td>
<td>18.0</td>
<td>10</td>
<td>16</td>
</tr>
<tr>
<td>28輪</td>
<td>アメリカ</td>
<td>10.7〜18.3</td>
<td>16.8〜25.9</td>
<td>16.8〜25.9</td>
<td>4.5〜6.4</td>
</tr>
</tbody>
</table>

*州ごとに異なる。
6. 鋳装への影響
ここでは大型貨物自動車が鋳装の破壊に与える影響について、OＥＣＤレポートの第6章の内容を中心に紹介していく。

6-1 鋳装構造の比較
OＥＣＤレポートでは、新鋳鋳装およびオーバーレイ鋳装の観察厚と軸重制限値の関係を調べるために、設計条件を同一にしてOＥＣＤ諸国間の設計法の比較を行なっている。

(1) 新鋳鋳装
設計条件は路床の設計CＢＲを10とし、大型車交通量を50, 250, 1250台／日・車線の3種類としている。図-2は各国の新鋳鋳装の標準断面を軸重および交通量別に示したものである。OＥＣＤレポートでは、次のよう

<table>
<thead>
<tr>
<th>国名</th>
<th>乗用車</th>
<th>バス</th>
<th>トラック</th>
<th>トラック以上（1500kg以上）</th>
<th>セミトレーラー</th>
<th>トレーラー</th>
</tr>
</thead>
<tbody>
<tr>
<td>オーストラリア（1979）</td>
<td>5,657</td>
<td>37</td>
<td>421</td>
<td>77</td>
<td>152</td>
<td>43</td>
</tr>
<tr>
<td>オーストリア（1979）</td>
<td>2,139</td>
<td>9</td>
<td>172</td>
<td>209</td>
<td>108</td>
<td>27</td>
</tr>
<tr>
<td>ベルギー（1979）</td>
<td>3,077</td>
<td>17</td>
<td>259</td>
<td>2,332</td>
<td>570</td>
<td>124</td>
</tr>
<tr>
<td>ドンマーク（1978）</td>
<td>1,423</td>
<td>7</td>
<td>295</td>
<td>1,236</td>
<td>678</td>
<td>61</td>
</tr>
<tr>
<td>フランス（1978）</td>
<td>17,400</td>
<td>41</td>
<td>2,288</td>
<td>520</td>
<td>80</td>
<td>5</td>
</tr>
<tr>
<td>西ドイツ（1979）</td>
<td>22,335</td>
<td>68</td>
<td>1,391</td>
<td>520</td>
<td>80</td>
<td>5</td>
</tr>
<tr>
<td>ギリシャ（1978）</td>
<td>836</td>
<td>16</td>
<td>351</td>
<td>161</td>
<td>161</td>
<td>54</td>
</tr>
<tr>
<td>イタリア（1979）</td>
<td>16,240</td>
<td>52</td>
<td>1,411</td>
<td>1,236</td>
<td>678</td>
<td>61</td>
</tr>
<tr>
<td>日本（1979）</td>
<td>22,667</td>
<td>229</td>
<td>13,335</td>
<td>1,236</td>
<td>678</td>
<td>61</td>
</tr>
<tr>
<td>オランダ（1976）</td>
<td>4,100</td>
<td>10</td>
<td>288</td>
<td>520</td>
<td>80</td>
<td>5</td>
</tr>
<tr>
<td>スペイン（1979）</td>
<td>7,058</td>
<td>42</td>
<td>1,216</td>
<td>520</td>
<td>80</td>
<td>5</td>
</tr>
<tr>
<td>スウェーデン（1979）</td>
<td>2,868</td>
<td>13</td>
<td>174</td>
<td>2,332</td>
<td>570</td>
<td>124</td>
</tr>
<tr>
<td>スイス（1979）</td>
<td>2,154</td>
<td>11</td>
<td>161</td>
<td>2,332</td>
<td>570</td>
<td>124</td>
</tr>
<tr>
<td>イギリス（1979）</td>
<td>14,926</td>
<td>113</td>
<td>1,827</td>
<td>1,236</td>
<td>678</td>
<td>61</td>
</tr>
<tr>
<td>アメリカ（1979）</td>
<td>120,248</td>
<td>521</td>
<td>24,348</td>
<td>1,236</td>
<td>678</td>
<td>61</td>
</tr>
</tbody>
</table>

*1「トラック」として登録した車両
*2セミトレーラー・トレーラー
*3トラクターを除く
*4運輸省陸運統計による

表-3 各国の貨物輸送の割合（単位：％）

<table>
<thead>
<tr>
<th>国名</th>
<th>輸送量（t）</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>鉄道</td>
<td>道路</td>
<td>琵琶湖</td>
<td></td>
</tr>
<tr>
<td>オーストラリア（1979）</td>
<td>22.2</td>
<td>76.0</td>
<td>1.8</td>
<td></td>
</tr>
<tr>
<td>ベルギー（1979）</td>
<td>5.4</td>
<td>84.7</td>
<td>6.2</td>
<td>3.7</td>
</tr>
<tr>
<td>ドンマーク（1979）</td>
<td>12.6</td>
<td>76.4</td>
<td>5.2</td>
<td>5.8</td>
</tr>
<tr>
<td>西ドイツ（1979）</td>
<td>10.3</td>
<td>79.3</td>
<td>7.5</td>
<td>2.9</td>
</tr>
<tr>
<td>イタリア（1978）</td>
<td>3.0</td>
<td>91.0</td>
<td>6.0</td>
<td></td>
</tr>
<tr>
<td>日本（1979）</td>
<td>3.1</td>
<td>88.2</td>
<td>8.6</td>
<td></td>
</tr>
<tr>
<td>オランダ（1979）</td>
<td>2.7</td>
<td>51.2</td>
<td>39.6</td>
<td>6.4</td>
</tr>
<tr>
<td>スペイン（1979）</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>スウェーデン（1979）</td>
<td>12.8</td>
<td>87.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>スイス（1979）</td>
<td>13.1</td>
<td>78.6</td>
<td>4.2</td>
<td>4.0</td>
</tr>
<tr>
<td>イギリス（1976）</td>
<td>9.8</td>
<td>84.5</td>
<td>0.3</td>
<td>2.9</td>
</tr>
<tr>
<td>アメリカ（1976）</td>
<td>28.0</td>
<td>37.4</td>
<td>12.4</td>
<td>17.7</td>
</tr>
</tbody>
</table>

表-4 各国の過積載車の割合（単位：％）

<table>
<thead>
<tr>
<th>国名</th>
<th>2輪</th>
<th>3-4輪</th>
<th>セミトレーラー</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>イタリア（1979）</td>
<td>4.5</td>
<td>15.2</td>
<td>32.5</td>
<td>45</td>
</tr>
<tr>
<td>フランス（1978）</td>
<td>4.1</td>
<td>0.2</td>
<td>16.3</td>
<td>18.7</td>
</tr>
<tr>
<td>アメリカ（1979）</td>
<td>15</td>
<td>15.5</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>西ドイツ（1977）</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>オーストラリア（1974-75）</td>
<td>9</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>イギリス（1980）</td>
<td>12.3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

表-5 過積載車の割合

(OECDレポート、イタリアのデータ)

<table>
<thead>
<tr>
<th>車軸の種類</th>
<th>シングル</th>
<th>タンデム</th>
<th>ドライテム</th>
</tr>
</thead>
<tbody>
<tr>
<td>最大軸重（t）</td>
<td>12</td>
<td>19</td>
<td>25</td>
</tr>
<tr>
<td>過積載車の割合（％）</td>
<td>16</td>
<td>23</td>
<td>40</td>
</tr>
<tr>
<td>最大軸重を61％を超えた過積載車の割合（％）</td>
<td>1</td>
<td>3</td>
<td>22</td>
</tr>
</tbody>
</table>

56 ASPHALT
ことを指摘している。

① 日本とデンマークの舗装厚は他の10 t 軸重の国
の舗装厚に比べてうすい（日本とデンマークは設
計寿命が10年、他国は設計寿命が20年）

② イギリスはアスコン層が比較的厚い。その分だ
け路盤の厚さを減らしている。

③ 軸重が異なっていても、アスコン層の厚さには
大きな差がみられない（大型車交通量が1250台/日
・車線で20～25cm、250台/日・車線で15～20cm）

表-6 オーバーレイの厚さ

<table>
<thead>
<tr>
<th>軸重</th>
<th>10 t</th>
<th>13 t</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 (BC)</td>
<td>6 (BC)</td>
<td>5 (BC)</td>
</tr>
<tr>
<td>12 (BC)</td>
<td>10 (BC)</td>
<td></td>
</tr>
<tr>
<td>18 (BC)</td>
<td>10 (BC)</td>
<td></td>
</tr>
<tr>
<td>*</td>
<td>*</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>梱</th>
<th>高</th>
<th>高</th>
</tr>
</thead>
<tbody>
<tr>
<td>日本</td>
<td>カナダ</td>
<td>ドイツ</td>
</tr>
<tr>
<td>イギリス</td>
<td>フランス</td>
<td></td>
</tr>
</tbody>
</table>

以下、上記のパラメータを順に紹介していく。

(1) 軸重

イ）AASHO 道路試験の成果

AASHO より道路試験の成果のうち最も頼に確立された
ものの中に、軸重換算係数（equivalence factor）が
あげられる。ある軸重に対応する軸重換算係数は、次の破
壊則（4 槻則）によって定義される。

\[
EF_x = \left( \frac{W_x}{W_{ref}} \right)^4
\]  ……(1)

ここに、\(EF_x\)：軸重換算係数
\(W_x\)：任意の軸重
\(W_{ref}\)：標準軸重

図-3はSN（構造指数）が2, 4, 6 のときのシングル
軸およびタンデム軸の AASHO 軸重換算係数3）をプ
ロットしたものである。図から、軸重換算係数は SNの
変化に対してあまり変動しないことが認められる。

AASHO の軸重換算係数は現在でも広く用いられて

図-2 OECD諸国新規舗装の比較

設計条件は、

1）交通量が 50台/日・車線で、たわみ量が 2 mm
2）交通量が 1250台/日・車線で、たわみ量が 1 mm
3）の場合を設定している。表-6 は各国のオーバーレイの
舗装厚と軸重および交通量別に示したものである。

OECD レポートは新規舗装およびオーバーレイの舗
装厚と軸重制限値の間に相関性がないと述べている。
しかし、表-6 をみると13 t 軸重のオーバーレイ舗装厚
は10 t 軸重の舗装厚よりも厚い傾向が認められる。

6）2 車両のパラメータの影響

OECD レポートは舗装の破壊に影響を与える車両の
パラメータとして、次のようなものをあげている。

① 軸重

Vol. 29 No. 147 (1986年)
おり、アメリカの交通運輸研究委員会（Transportation Research Board Committee）が行ったアンケート調査によって、アメリカ50州のうち43州（解答数45州）で採用されている。また、理論的な設計方法で有名なシェルの設計法においても、交通量の変換に4乗則が取り入れられている。

（2）軸重換算係数に関する問題点

AASHO道路試験の軸重換算係数は特定の舗装構造、舗装材料、交通量および環境条件によって得られたものである。したがって、轴重換算係数は万能ではなく、適用に制限があると考えられる。Lister, Lurh およびは舗装構造および交通量によって軸重換算係数が大きく変動することを報告している。

Lister は AASHO 道路試験とは異なる舗装構造および交通量を設定し、舗装が破壊するまでの PS1の低下を荷重の通過回数と結び付け、破壊則の指数を求めている。（表 - 7）Lurh は、4乗則が舗装厚の厚い舗装に対しても適用でき、舗装厚が小さなほど材料が高（4以上）と述べている。

Lurh は AASHO 道路試験のデータを用いて、多層弾性プログラム（ELSYM 5）で路面上面の垂直圧縮ひずみを計算し、破壊時の PS1 と軸重載荷回数との重回帰式を求めている。図 - 4 は設定した 2 種類の舗装構造における軸重換算係数をプロットしたものである。図から、AASHO の軸重換算係数が SN の変化に対してもわずかしか変動しないのに対し、ひずみから求めた軸重換算係数は舗装構造のちがいによってかなり変動することがわかる。この理由として、Lurh は舗装材料の応力特性（例えば拘束圧の増加、部分応力の減少など）によって左右されるためであると述べている。

また、第17回 PIARC の第5講題のナショナル・レポートは、過積載車の増加が問題になっている開発途上国で AASHO の軸重換算係数をそのまま適用することに疑問を投げかけており、破壊則の指数を 5.55 にすべきであると述べている。

（2）車輪のタイプ

AASHO 道路試験に用いた荷重車（試験車）は前輪を除けば、すべて複輪のシングル軸およびタンデム軸からなっている。ここでは、単輪のシングル軸と複輪のシングル軸が舗装に与える影響について検討する。

OECD レポートでは、複輪のシングル軸を基準とし、単輪、複輪およびワイドベース軸（wide-base tyre）のシングル軸の軸重換算係数を計算したイタリアの研究結果を紹介している。表 - 8 から、AASHO の4乗則は複輪のシングル軸だけ適用され、単輪およびワイドベース軸のシングル軸には適用できないことがわかる。

表 - 7 破壊則の指数

<table>
<thead>
<tr>
<th>軍</th>
<th>交通量</th>
<th>車荷重（KN）</th>
<th>20</th>
<th>40</th>
<th>60</th>
<th>80</th>
</tr>
</thead>
<tbody>
<tr>
<td>強</td>
<td>中</td>
<td>3.8</td>
<td>3.9</td>
<td>5.0</td>
<td>5.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>重</td>
<td>3.8</td>
<td>3.5</td>
<td>4.3</td>
<td>5.2</td>
<td></td>
</tr>
<tr>
<td>中</td>
<td>軽</td>
<td>3.1</td>
<td>4.0</td>
<td>8.3</td>
<td>8.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>中</td>
<td>2.8</td>
<td>3.1</td>
<td>5.4</td>
<td>6.2</td>
<td></td>
</tr>
<tr>
<td>軍</td>
<td>軽</td>
<td>2.3</td>
<td>2.6</td>
<td>5.1</td>
<td>7.7</td>
<td></td>
</tr>
<tr>
<td>軍</td>
<td>中</td>
<td>2.5</td>
<td>6.0</td>
<td>6.7</td>
<td>11.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>重</td>
<td>1.2</td>
<td>5.7</td>
<td>8.1</td>
<td>11.6</td>
<td></td>
</tr>
</tbody>
</table>

図 - 4 AASHO 軸重換算係数とひずみから求めた軸重換算係数の比較

経済研究所
単軸と複軸のシングル軸の軸重換算係数を理論的に求めたものに、Deacon 9)、Hallin 10)の研究がある。
Deacon 9)は弾性理論を用いてアスコン層下に生じる水平引張ひずみを計算し、(2)式に示す疲労破壊に基づく軸重換算係数を求めている。

\[ F_i = \left( \frac{e_i}{e_b} \right)^3 \]  \hspace{1cm} (2)

ここに、\( F_i \)：軸重換算係数
\( e_i \)：任意軸重によって生じる最大引張ひずみ
\( e_b \)：標準軸重によって生じる最大引張ひずみ

C：係数、通常は 5.5

計算の結果、単軸のシングル軸が複軸のシングル軸にとって約 3 倍の破壊作用をもつことが明らかになった。

Hallin 10)は表層（アスコン）、碎石路盤および路床の三層構造を考え、弾性プログラム（PSAD 2 A）を用い、Deacon と同様にアスコン層下の水平引張ひずみを計算して軸重換算係数を求めている。破壊モデルは(3)式に示す Finn の式 11)を用いている。

\[ \log N_f = 15.947 - 3.219 \log (\epsilon/10^{-6}) - 0.854 (E^* / 10^3) \]  \hspace{1cm} (3)

ここに、\( N_f \)：破壊までの荷重回数
\( \epsilon \)：アスコン層下の最大引張ひずみ
\( E^* \)：レギリアント・モジュラス (psi)

表 9 は S N が 4 のときの単軸のシングル軸に対する複軸のシングル軸の軸重換算係数を複軸間隔別に求めたものである。表から、複軸間隔が 12 ～ 14 in (30.5 ～ 35.6 cm) で、軸重が 18 kip (8.2 t) の軸重換算係数を読み取れば 1.8 ～ 2.3 という値が得られ、単軸のシングル軸は複軸のシングル軸に比べて約 2 倍の破壊を与えるといえよう。

これに対し、現場試験の調査結果を基にして軸重換算係数を求めた研究も行なわれている。Christison 12)はカナダのアルバータ州に設けられたルーベス橋梁の試験橋梁区間で表面たわみおよびアスコン層下の水平引張ひずみを実測し、交通荷重の影響を解釈している。その結果、Christison は単軸のシングル軸の軸重換算係数が複軸のシングル軸に比べて 7 ～ 10 倍になると述べている。解析結果を図 5 に示す。

![図 5 シングル軸の軸重換算係数](image)

最後にアメリカの連邦交通省道路局（FHWA）の興味ある研究を紹介する。Carmichael 13)は AASHO 路面試験のデータを解析して単軸の軸重換算係数を導いている。この試みは現在の AASHO の軸重換算係数が前軸（単軸のシングル軸）と後軸（複軸）の荷重による破壊を受けて得られたと考え、単軸と複軸による破壊を分離することによって単軸のシングル軸の軸重換算係数を決定しようとするものである。計算結果は表 10 に示すとおりである。データ数は少ないが、単軸のシングル軸（前軸）の軸重換算係数は複軸のシングル軸の軸重換算係数の 2 ～ 3 倍であるといえよう。

表 9 シングル軸（単軸）に対するシングル軸（複軸）の軸重換算係数

<table>
<thead>
<tr>
<th>軸重 (kips)</th>
<th>10in</th>
<th>12in</th>
<th>14in</th>
<th>16in</th>
<th>18in</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0.6309</td>
<td>0.4790</td>
<td>0.3731</td>
<td>0.2969</td>
<td>0.2405</td>
</tr>
<tr>
<td>12</td>
<td>1.0236</td>
<td>0.7809</td>
<td>0.6082</td>
<td>0.5010</td>
<td>0.3921</td>
</tr>
<tr>
<td>14</td>
<td>1.5549</td>
<td>1.1805</td>
<td>0.9195</td>
<td>0.7231</td>
<td>0.5927</td>
</tr>
<tr>
<td>16</td>
<td>2.2324</td>
<td>1.6887</td>
<td>1.3153</td>
<td>1.0466</td>
<td>0.8479</td>
</tr>
<tr>
<td>18</td>
<td>3.0502</td>
<td>2.3157</td>
<td>1.8038</td>
<td>1.4353</td>
<td>1.1627</td>
</tr>
<tr>
<td>20</td>
<td>4.0458</td>
<td>3.0715</td>
<td>2.3925</td>
<td>1.9038</td>
<td>1.3423</td>
</tr>
<tr>
<td>22</td>
<td>5.2237</td>
<td>3.9658</td>
<td>3.0891</td>
<td>2.4580</td>
<td>1.9913</td>
</tr>
<tr>
<td>24</td>
<td>6.5962</td>
<td>5.0077</td>
<td>3.9007</td>
<td>3.1038</td>
<td>2.5145</td>
</tr>
<tr>
<td>26</td>
<td>8.1750</td>
<td>6.2064</td>
<td>4.8343</td>
<td>3.8468</td>
<td>3.1164</td>
</tr>
<tr>
<td>28</td>
<td>9.9718</td>
<td>7.5705</td>
<td>5.8696</td>
<td>4.6923</td>
<td>3.8014</td>
</tr>
<tr>
<td>30</td>
<td>11.9779</td>
<td>9.1087</td>
<td>7.0951</td>
<td>5.6457</td>
<td>4.5737</td>
</tr>
<tr>
<td>32</td>
<td>14.2643</td>
<td>10.8293</td>
<td>8.4535</td>
<td>6.7121</td>
<td>5.4378</td>
</tr>
<tr>
<td>34</td>
<td>16.7818</td>
<td>12.7406</td>
<td>9.9241</td>
<td>7.8968</td>
<td>6.3974</td>
</tr>
<tr>
<td>38</td>
<td>22.6123</td>
<td>17.1670</td>
<td>13.3719</td>
<td>10.6403</td>
<td>8.6204</td>
</tr>
<tr>
<td>40</td>
<td>25.9458</td>
<td>19.6970</td>
<td>15.3432</td>
<td>12.2083</td>
<td>9.8099</td>
</tr>
</tbody>
</table>

(SN = 4)

Vol. 29 No. 147 (1986)
(3) 軸配置

イ）シングル軸、タンデム軸およびトライデム軸
ここではシングル軸、タンデム軸およびトライデム軸の軸重換算係数を扱った文献を理論によるものとし、現場試験によるものに分けて紹介する。

(a) 理論によるものの
タンデム軸の軸重換算係数を理論的に求めたものとして、Deacon9）、Uzanら14）の研究がある。Deacon9）はすでに述べたようにアスファルト下面の水平ひずみを計算し、タンデム軸の軸重換算係数を求めている。理諭値は図-6に示すようにA116）（米国アスファルト協会）の直線と重なり、AASHOの直線とも近似していることとで整合性を確認している。なお、A1はMS-1の第8版15）までAASHOとは異なる軸重換算係数を用いていたが、第9版16）の改訂後にAASHOの軸重換算係数（Pt=2.5，SN=5）を採用するに至っている。Deaconはシングル軸重とシングル軸重の1.75倍に相当するタンデム軸重が同じ破壊作用をもつことを述べている。
一方、Uzanら14）は二層弾性理論を用い、路床上面のせん断応力を破壊基準として軸重換算係数を求めることを提案している。理論の整合性はAASHO道路試験の舗装断面で計算を行ない、シングル軸重と同じ破壊作用をもつタンデム軸重の比が1.80〜1.90であることによって確認している。AASHOではSN=2〜6のとき1.83〜1.87）

(b) 現場試験によるもの
現場試験の結果を基にしたタンデム軸の軸重換算係数

\[
\begin{array}{c|c|c|c|c|c}
\text{軸重} & \text{シングル軸} & \text{タンデム軸} & \text{シングル軸} & \text{AASHO} & \text{タンデム軸} & \text{AASHO} & \text{前軸} \\
(kips) & & & & & & & \\
\hline
2 & .0009 & .002 & -- & -- & -- & .009 & -- \\
4 & .002 & .02 & -- & -- & -- & .05 & -- \\
6 & .002 & .009 & .006 & .01 & .06 & -- & -- \\
8 & .008 & .008 & .006 & .01 & .01 & .25 & -- \\
10 & .03 & .01 & .01 & .01 & .46 & -- & -- \\
12 & .34 & .35 & .02 & .03 & -- & -- & -- \\
14 & .61 & .61 & .04 & .05 & -- & -- & -- \\
16 & 1.00 & 1.00 & .07 & .08 & -- & -- & -- \\
18 & 1.06 & 1.25 & .11 & .12 & -- & -- & -- \\
20 & 2.34 & 2.31 & .16 & .17 & -- & -- & -- \\
22 & 3.39 & 3.38 & .23 & .25 & -- & -- & -- \\
24 & 4.77 & 4.68 & .33 & .35 & -- & -- & -- \\
26 & 6.53 & 6.42 & .45 & .48 & -- & -- & -- \\
28 & 8.75 & 8.65 & .61 & .64 & -- & -- & -- \\
30 & 11.51 & 11.46 & .80 & .84 & -- & -- & -- \\
32 & 14.89 & 14.97 & 1.03 & 1.08 & -- & -- & -- \\
34 & 18.98 & 19.28 & 1.32 & 1.38 & -- & -- & -- \\
36 & 23.87 & 24.55 & 1.66 & 1.72 & -- & -- & -- \\
38 & 29.68 & 30.92 & 2.06 & 2.13 & -- & -- & -- \\
40 & -- & -- & 2.53 & 2.62 & -- & -- & -- \\
42 & -- & -- & 3.09 & 3.18 & -- & -- & -- \\
44 & -- & -- & 3.73 & 3.83 & -- & -- & -- \\
46 & -- & -- & 4.47 & 4.58 & -- & -- & -- \\
48 & -- & -- & -- & -- & -- & -- & -- \\
\hline
\end{array}
\]

a）9-kipの前軸に対する軸重換算係数
は Christison ら12) が、またトライドム軸の軸重換算係数は Wang ら17) が求めている。Christison ら12) はすでに述べた手法を用いて、シングル軸重と同じ破壊作用をもトラ円体軸重の比が 1.67 であるという結果を得ている。また、Christison らは軸装の破壊基準として表面たわみとアスコン層下面の水平引張ひずみを用いているが、両者から求めた軸重換算係数に差が見い出せないことを述べている。

Wang ら17) はトラ円体軸の軸重換算係数を決定するために、ペンシルバニア州の試験舗装区間で軸重 338〜KN の三転車を 55000 回走行させ、PSI の低下割合から 2.60 という値を算出している。Wang らは路床上面の垂直圧縮ひずみを多層弾性プログラム（BISAR）を用いて計算し、シングル軸、タンデム軸およびトラ円体軸の垂直圧縮ひずみと軸重換算係数倉両対数グラフにプロットしたところ、図-7 に示す直線関係が得られた。しかし、三層構の直線がほぼ平行になっていることによって、トラ円体軸の軸重換算係数の予測値の整合性を確認している。

図-7 路床上面の圧縮ひずみと軸重換算係数17)

(e) シングル軸、タンデム軸およびトラ円体軸のまとめ

OECD レポートでは、各国のシングル軸に対するタンデム軸およびトラ円体軸の軸重換算係数を求めており、表-11 は複輪のシングル軸重に対するタンデム軸重およびトラ円体軸重（同じ破壊作用を示す）の比を示したものですので、平均値を求めると、タンデム軸の比は 1.6、トラ円体軸の比は 2.3 となる。

これまで述べてきたデータに文献調査の結果得られたデータを追加して、複輪のシングル軸に対するタンデム軸およびトラ円体軸の軸重換算係数をまとめたものを表-12 に示す。

3 軸以上の軸重換算係数の研究は Treybig21)、Southgate ら22) によって行なわれている。Treybig は予測式を、Southgate らは重回帰式を作成している。

Treybig21) はアスコン層下面の水平引張ひずみおよび路床上面の垂直圧縮ひずみを多層弾性プログラム（ELSYM5）で計算し、複数の荷重条件に対する軸重換算係数を求める予測式を導いている。

\[ F(x_n) = \left[ \frac{\varepsilon_1(x_n)}{\varepsilon_1(18 s)} \right]^{0.9} + \sum \left[ \frac{\varepsilon_{i+1}(x_n)}{\varepsilon_{i+1}(18 s)} \right]^{0.9} \] 　(4a)

\[ B = \frac{\log F(x_n)}{\log \frac{\varepsilon_1(x_n)}{\varepsilon_1(18 s)}} \] 　(4a)

ここに、\( F_1(x_n) \) : 荷重 \( x_n \) の軸の予想軸重換算係数

\( \varepsilon_1(18s) \) : シングル軸重 18-kip (80KN)

下のアスコン層下面の最大引張ひずみまたは路面上面の最大圧縮ひずみ（in/in）

\( \varepsilon_1(x_n) \) : 荷重 \( x_n \) の軸下のアスコン層下面の最大引張ひずみまたは路面上面の最大圧縮ひずみ（in/in）

\( \varepsilon_{i+1}(x_n) \) : 荷重 \( x_n \) の軸の \( (i+1) \) 軸下のアスコン層下面の最大引張ひずみまたは路面上面の最大圧縮ひずみ

表-11 各国の軸重換算係数1)

<table>
<thead>
<tr>
<th>国名</th>
<th>タンデム軸</th>
<th>トラ円体軸</th>
</tr>
</thead>
<tbody>
<tr>
<td>オーストラリア</td>
<td>1.9</td>
<td>2.1</td>
</tr>
<tr>
<td>ベルギー</td>
<td>1.5</td>
<td>—</td>
</tr>
<tr>
<td>カナダ</td>
<td>1.7</td>
<td>—</td>
</tr>
<tr>
<td>西ドイツ</td>
<td>1.6</td>
<td>2.2</td>
</tr>
<tr>
<td>デンマーク</td>
<td>1.6</td>
<td>2.4</td>
</tr>
<tr>
<td>フランス</td>
<td>1.6</td>
<td>2.5</td>
</tr>
<tr>
<td>ギリシャ</td>
<td>1.5</td>
<td>2.3</td>
</tr>
<tr>
<td>イタリア</td>
<td>1.6</td>
<td>2.6</td>
</tr>
<tr>
<td>オランダ</td>
<td>1.8</td>
<td>—</td>
</tr>
<tr>
<td>アメリカ</td>
<td>1.7</td>
<td>2.1</td>
</tr>
<tr>
<td>AASHO</td>
<td>1.6</td>
<td>—</td>
</tr>
</tbody>
</table>

表-12 タンデム軸およびトラ円体軸の軸重換算係数

<table>
<thead>
<tr>
<th>国名</th>
<th>タンデム軸</th>
<th>トラ円体軸</th>
</tr>
</thead>
<tbody>
<tr>
<td>OECD （各国）</td>
<td>1.5〜1.9</td>
<td>2.1〜2.6</td>
</tr>
<tr>
<td>Deacon 9)</td>
<td>1.75</td>
<td>—</td>
</tr>
<tr>
<td>Christison ら12)</td>
<td>1.67</td>
<td>—</td>
</tr>
<tr>
<td>Uzan ら14)</td>
<td>1.80〜1.90</td>
<td>—</td>
</tr>
<tr>
<td>Wang ら17)</td>
<td>—</td>
<td>2.60</td>
</tr>
<tr>
<td>Southgate ら18)</td>
<td>1.89</td>
<td>—</td>
</tr>
<tr>
<td>PIARC オーストラリア19)</td>
<td>1.58〜1.91*</td>
<td>—</td>
</tr>
<tr>
<td>PIARC オーストラリア20)</td>
<td>1.66</td>
<td>2.26</td>
</tr>
</tbody>
</table>

*軸線による
\( \varepsilon_{i}^{+} (v_{n}) \)：荷重のn軸の1軸と（1 + 1）
軸の間でのアスコン層の引張り
ひずみまたは路床面の圧縮ひずみ
（in/in）

\( F (x_{n}) \)：シングル軸重 \( x \)-kipに対するAAS
HOの軸荷換算係数

\( 6 (x_{n}) \)：シングル軸重 \( x \)-kipに対するアスコン層の引張り
ひずみまたは路床面の圧縮ひずみ
（in/in）

予測式の整合性はシングル軸およびタンデム軸の軸重
換算係数を求めてみた結果、図－8に示すようにAASH
HOの軸荷換算係数とはほぼ一致することを確認している。
また、Treybig は路床面の圧縮ひずみによる予測の
方がアスコン層下面の引張りひずみによる予測よりも精度
がよいと述べている。

南ゲートら21）はChevron NLプログラムを用い、
重ね合わせの原理でひずみエネルギーを計算し、種類の
軸配置に対する軸荷換算係数を求め、表－13に示す回帰
係数を得ている。図－9はこの回帰式を用い、軸重を
変えるときの軸荷換算係数をグラフにしたものである。
複数のシングル軸重（80 KN）に対する等価軸重を求め
たものが表－14である。表から、等価全軸重は軸重が多
くになるにつれて重くなるが、各軸にかかる軸重はシン
グル軸を除けばほぼ一定（83 KN）であることがわかる。

（4）軸数

タンデム軸の軸数（前後軸と後後軸の距離）の影響を
捉えた文献は、Deacon9）、PIARC19）のものがある。軸
荷換算係数は軸組合せが大きいほど大きくなる傾向がある。

（5）接地圧

接地圧は車輪にかかる荷重が大きいほど高くなる。O
ECDレポートでは舗装の破壊に影響を与える要因とし

<table>
<thead>
<tr>
<th>軸配置</th>
<th>回帰係数*</th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>シングル（単軸）</td>
<td>-3.54012</td>
<td>2.728860</td>
<td>0.289133</td>
<td></td>
</tr>
<tr>
<td>シングル（複軸）</td>
<td>-3.43951</td>
<td>0.423747</td>
<td>1.864657</td>
<td></td>
</tr>
<tr>
<td>タンデム軸</td>
<td>-2.979479</td>
<td>-1.265144</td>
<td>2.007989</td>
<td></td>
</tr>
<tr>
<td>トライダム軸</td>
<td>-2.740387</td>
<td>-1.973428</td>
<td>1.964442</td>
<td></td>
</tr>
<tr>
<td>4軸</td>
<td>-2.589482</td>
<td>-2.224981</td>
<td>1.923512</td>
<td></td>
</tr>
<tr>
<td>5軸</td>
<td>-2.654324</td>
<td>-2.666882</td>
<td>1.397472</td>
<td></td>
</tr>
<tr>
<td>6軸</td>
<td>-2.084883</td>
<td>-2.900445</td>
<td>1.913994</td>
<td></td>
</tr>
</tbody>
</table>

* \( \log (DF) = a + b \log (L) + c (\log L)^{2} \)

ここに，DF：軸荷換算係数
L：圧縮（Kips）

<table>
<thead>
<tr>
<th>軸数</th>
<th>車軸の数*</th>
<th>等価軸重（KN）</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>63.6 63.6</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>80.0 80.0</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>166.4 83.2</td>
</tr>
<tr>
<td>3</td>
<td>12</td>
<td>250.0 83.3</td>
</tr>
<tr>
<td>4</td>
<td>16</td>
<td>333.6 83.4</td>
</tr>
<tr>
<td>5</td>
<td>20</td>
<td>415.0 83.0</td>
</tr>
<tr>
<td>6</td>
<td>24</td>
<td>496.4 82.7</td>
</tr>
</tbody>
</table>

*後軸の車軸数

图－8 路床面の圧縮ひずみによる軸荷換算係数21）

图－9 軸重と軸荷換算係数22）
て取りあげている。しかし、Southgateら23)は接地圧を60〜100 psi（4.2〜7.0 kgf/cm²）まで変化させても、舗装体に生じるたわみおよびひずみにはほとんど影響しないことを指摘している。

6-3 車両のパラメータが舗装の破壊に与える影響の比較

OECDの研究では、種々のパラメータをもつ大型貨物自動車の破損係数を比較するために次式を提案し、検討を行なっている。

\[ D = \left[ K_1 \times K_2 \times K_3 \times \frac{P}{P_0} \right]^4 \]  ⑤

ここで、

- \( D \): 破損係数
- \( P \): 任意の軸重
- \( P_0 \): 標準軸重

\( K_1, K_2, K_3 \): 係数（表15参照）

表15 計算に用いる係数①

<table>
<thead>
<tr>
<th>種類</th>
<th>類型</th>
<th>係数</th>
</tr>
</thead>
<tbody>
<tr>
<td>( K_1 ) (車軸のタイプ)</td>
<td>タンドレム</td>
<td>0.6</td>
</tr>
<tr>
<td></td>
<td>タイドレム</td>
<td>0.45</td>
</tr>
<tr>
<td></td>
<td>車軸</td>
<td>1.0</td>
</tr>
<tr>
<td>( K_2 ) (車軸のタイプ)</td>
<td>ウィドベース</td>
<td>1.2</td>
</tr>
<tr>
<td></td>
<td>復軸</td>
<td>1.3</td>
</tr>
<tr>
<td>( K_3 ) (舗装のタイプ)</td>
<td>従来型</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>改良型</td>
<td>0.95</td>
</tr>
</tbody>
</table>

6-4 実物大試験舗装での研究

理論的研究および現場試験の結果をふまえた軸重換算係数に関する文献を紹介してきたが、これらはすべて限られた条件ででの成果にすぎない。しかし、これらの成果を世界中各地方から収集して集大成することによって、異なる舗装構造、舗装材料、環境および交通荷重に対してできる実用的な破壊則を確立できる可能性が残されている。そのためには、研究方法は統一された方が望ましく、破壊則の検証を試験舗装で確認されなければならない。

OECDの研究はAASHO道路試験で得られた4乗則の検証を各国の実物大試験舗装で行なうことの必要性を指摘し、共同研究計画に基づいて実施することを提案している。OECDの報告書"Full-Scale Pavement Tests"によれば、試験舗装を用いた荷重の等価の研究は西ドイツ、イタリア、フィンランド、デンマークおよびオーストラリアで計画されている。なお、各国の実物大試験舗装の概要は飯島23)報告しているので、参照していただきたい。

7. 舗装の費用への影響

7-1 新設舗装

OECDの報告書では最大軸重
が異なる新設舗装の建設コスト比について試算している。
図11は軽重10 t, 13 tで設計した新設舗装の建設コスト比と交通量の関係を示したものである。曲線はOECD諸国9ヶ国のデータを基にし、次のように仮定を設定して描かれたものである。
① 舗装材の厚さはフランスの価格を基準にしたコスト比に変換する。
② 舗装構造は次の3種類とする。
軽交通……非安定処理路盤からなる舗装。
中交通……非安定処理下層路盤+安定処理路盤からなる舗装。
重交通……同 上
③ 設計方法はシェールとフランスの方法を用いる。

図12 メンテナンスコスト比と大型車交通量

OECDレポートは次のようなことを述べている。
① 新設舗装の建設コスト比は最大軸重が大きいほど、また交通量が多いほど高くなっている。
7－2 鋼板のメンテナンス
OECDレポートでは、メンテナンスを2つに分類して計算を行っている。
1. 構造的なメンテナンス……舗装の寿命を延ばし、累積疲労を防ぐ。
2. 表面的なメンテナンス……舗装の表面特性（凹凸、すべりなど）を回復させる。

図12はメンテナンスコスト比を構造的なメンテナンスと表面的なメンテナンスに分けて示したものである。データはフランス、西ドイツ、イギリスおよびスイスのものを用いている。曲線は26年間の舗装のメンテナンスコストを割引率9%として計算した各国の平均値を結んだものである。OECDレポートは次のようなことを述べている。
① 構造的なメンテナンスコスト比は交通量の増加とともに高くなっている。
② 表面的なメンテナンスコスト比は交通量が増加してもあまり変化しない。

8．車両の荷重制限の影響
車両の荷重制限を緩和して転重または総重量の法規を変更することは、1台あたりの大型貨物自動車の輸送量が増大することになり、その結果輸送効率が向上し、輸送費の節約となる。しかし、運送費の増大にともなう軸重の増加は舗装の寿命を短くし、莫大な維持修繕費が必要になる。

以下に、車両の荷重制限値を上げたときの影響を舗装構造および経済性に分けて述べることにする。なお、表16はここで取りあげた文献の概要をまとめたものである。

8－1 鋼板構造への影響
軸重を増加させたときの舗装寿命の低下割合は、Hicksら26）が求めている。Hicksらは多層弾性プログラム（ELSYM 5）を用いて、路面上の圧縮ひずみを計算し、シェルの破壊基準値から破壊に至るまでの載荷回数を求め、舗装寿命の低下割合を算出している。舗装寿命はシングル軸重を80 KNから110 KN、ダブル軸重を140 KNから200 KNまで増加させると約80%を低下する。

次に、軸重を増加させたとき、舗装の破壊を回復させ
<table>
<thead>
<tr>
<th>研究者</th>
<th>荷重制限</th>
<th>載装構造への影響</th>
<th>経済性への影響</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>OECD REPORT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>西ドイツ</td>
<td>シングル軸10.0 t&lt;br&gt;タンデム軸15.4 t</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OECD REPORT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>アメリカ</td>
<td>シングル軸9.1 t&lt;br&gt;タンデム軸14.0 t</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OECD REPORT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>オーストラリア</td>
<td>シングル軸8.5 t&lt;br&gt;タンデム軸14.0 t&lt;br&gt;トライデム軸18.0 t&lt;br&gt;総重量36.0 t</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OECD REPORT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>イギリス</td>
<td>シングル軸10.16t&lt;br&gt;トライデム軸18.0 t&lt;br&gt;総重量38.0 t</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hicksら(8)</td>
<td>シングル軸80 kN&lt;br&gt;タンデム軸140 kN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>アメリカ</td>
<td>シングル軸110 kN&lt;br&gt;タンデム軸200 kN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Becker(27)</td>
<td>シングル軸10.0 t</td>
<td>シングル軸11.0 t&lt;br&gt;オーバーレイ厚2 cm&lt;br&gt;新設舗装路盤2.6 cm</td>
<td>オーバーレイ +3.00&lt;br&gt;新設舗装路盤1.15&lt;br&gt;オーバーレイ厚5 cm&lt;br&gt;新設舗装路盤6.5 cm</td>
<td></td>
</tr>
<tr>
<td>西ドイツ</td>
<td>シングル軸89 kN&lt;br&gt;タンデム軸142 kN&lt;br&gt;総重量366 kN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ruhultら(2b)</td>
<td>シングル軸80 kN&lt;br&gt;タンデム軸140 kN&lt;br&gt;総重量366 kN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>アメリカ</td>
<td>シングル軸89 kN&lt;br&gt;タンデム軸151 kN&lt;br&gt;総重量334 kN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carnichaelら(29)</td>
<td>シングル軸89 kN&lt;br&gt;タンデム軸142 kN&lt;br&gt;総重量366 kN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>アメリカ</td>
<td>シングル軸118 kN&lt;br&gt;タンデム軸216 kN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Motomuraら(30)</td>
<td>シングル軸137 kN&lt;br&gt;タンデム軸235 kN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>オーマーン</td>
<td>シングル軸137 kN&lt;br&gt;タンデム軸235 kN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Waltonら(31)</td>
<td>シングル軸88.9 kN&lt;br&gt;タンデム軸151.2 kN&lt;br&gt;総重量355.3 kN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>アメリカ</td>
<td>シングル軸115.7 kN&lt;br&gt;タンデム軸195.7 kN&lt;br&gt;総重量355.3 kN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>古沢・岩崎(32)</td>
<td>総重量20.0 t&lt;br&gt;総重量23.0 t</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

舗装寿命 10年 → 5.7年

輸送費の利益 5.17〜6.14億ドイツマルク (11t →11t, 3.51〜3.93億ドイツマルク (11t →12t)

舗装の維持管理費 +0.75% 〜 +14% 輸送費 - 4%

舗装の寿命が最大80%損失

舗装の維持管理費 +5.1%

舗装の維持管理費 +0.6%

舗装の維持管理費 $2300 → $7600 (×百万)

舗装の維持管理費 $9000 → $8459 (×百万)
るのに必要なオーバーレイ厚は Hicks と Becker が求めている。Hicks らは、表-17に示すように交通量および路床の状態を変えたときのオーバーレイ厚を計算し、Becker はオーバーレイ厚と路盤の打換え厚を試算している。（表-18）計算結果から、オーバーレイ厚は軸重が大きいほど厚くなることがわかる。

8-2 経済性への影響

軸重を増加させたときの車両の輸送費は、OECDレポートの西ドイツおよびアメリカの研究で報告されている。アメリカの研究は軸重増加後、舗装の維持修繕費が3～14%増加するのに対し、輸送費が4%節約できることを述べている。

最近では、限られた予算を有効に使用するための舗装管理システムを適用して、軸重を増加させたときの舗装の維持修繕費を予測する研究がなされている。ここでは、その中から Rauhut さんの研究を紹介する。Rauhut らは VESYS A（VESYS II M の改良版）を用いて、軸重制限値を変化させたときのオーバーレイのトータルコストを求めている。（表-19）表から、オーバーレイのトータルコストは軸重の重い方が、舗装厚のうすい方が、交通量の多い方がおよび寒冷地の方が高いことが認められる。

表-17 オーバーレイの必要厚

<table>
<thead>
<tr>
<th>軸重 (kN)</th>
<th>路床の状態</th>
<th>収束量</th>
<th>輸送費</th>
<th>交通量 (10^2)</th>
<th>輸送費 (10^2)</th>
<th>中交通 (10^2)</th>
<th>大交通 (10^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>90</td>
<td>不良</td>
<td>16.3</td>
<td>21.3</td>
<td>23.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>不良</td>
<td>33.8</td>
<td>41.4</td>
<td>45.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>110</td>
<td>不良</td>
<td>50.5</td>
<td>59.4</td>
<td>66.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>中</td>
<td>10.4</td>
<td>19.1</td>
<td>21.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>中</td>
<td>21.3</td>
<td>38.4</td>
<td>41.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>110</td>
<td>中</td>
<td>32.0</td>
<td>56.1</td>
<td>60.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>良</td>
<td>—</td>
<td>—</td>
<td>11.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>良</td>
<td>—</td>
<td>1.0</td>
<td>22.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>110</td>
<td>良</td>
<td>—</td>
<td>8.1</td>
<td>34.5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

表-18 最大軸重と舗装厚

<table>
<thead>
<tr>
<th>軸重 (t)</th>
<th>オーバーレイ厚 (cm)</th>
<th>新設 (全舗)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.5</td>
<td>1.0</td>
<td>1.3</td>
</tr>
<tr>
<td>11.0</td>
<td>2.0</td>
<td>2.6</td>
</tr>
<tr>
<td>11.5</td>
<td>3.0</td>
<td>3.9</td>
</tr>
<tr>
<td>12.0</td>
<td>4.0</td>
<td>5.2</td>
</tr>
<tr>
<td>12.5</td>
<td>4.5</td>
<td>5.85</td>
</tr>
<tr>
<td>13.0</td>
<td>5.0</td>
<td>6.5</td>
</tr>
</tbody>
</table>

8-3 荷重制限値の影響のまとめ

これまで述べてきた研究成果から、荷重制限値の変更にともなう車両の重量化化舗装の破壊を増大させ、多種の維持修繕費が必要となることが示された。しかしながら、舗装の維持修繕費と車両の輸送費の両者を考えた経済比較は今後も詳細に行われるべきである。この経済比較は荷重制限値を検討するうえで避けられない問題であるため、今後の研究成果は待たれるところである。

9. おわりに

今まで述べてきた研究成果をまとめてみると、次のようになる。

1. 軸重換算係数は舗装構造および交通量によって変動する。
2. AASHOの軸重換算係数は複輪にのみ適用できる。
3. 単輪シングル車の軸重換算係数は複輪シングル軸の2～3倍である。
4. クンデム車およびトライデム車の軸重換算係数は、おおむね1.6, 2.3である。
5. 3車以上の車両の各軸にかかる荷重はほぼ一定である。
6. 舗装の維持修繕費は軸重とともに増加する。

表-19 オーバーレイに関する費用の平均値（軸重別）

<table>
<thead>
<tr>
<th>軸重 (t)</th>
<th>荷重制限値 (kN)</th>
<th>輸送費 (交通量)</th>
<th>輸送費 (中交通)</th>
<th>輸送費 (大交通)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.0</td>
<td>8.9</td>
<td>8.8</td>
<td>8.7</td>
<td>10.7</td>
</tr>
<tr>
<td>荷重制限値の有無</td>
<td>5.46</td>
<td>6.00</td>
<td>7.05</td>
<td>7.59</td>
</tr>
<tr>
<td>荷重制限値の有無</td>
<td>5.17</td>
<td>3.17</td>
<td>4.41</td>
<td>4.94</td>
</tr>
<tr>
<td>交通量が少ない</td>
<td>1.59</td>
<td>2.13</td>
<td>2.65</td>
<td>3.72</td>
</tr>
<tr>
<td>交通量が多い</td>
<td>7.05</td>
<td>7.05</td>
<td>8.45</td>
<td>8.65</td>
</tr>
<tr>
<td>環境が乾燥・風化</td>
<td>5.28</td>
<td>5.28</td>
<td>6.70</td>
<td>8.81</td>
</tr>
<tr>
<td>環境が乾燥・風化</td>
<td>6.70</td>
<td>7.76</td>
<td>8.81</td>
<td>8.81</td>
</tr>
<tr>
<td>環境が乾燥・風化</td>
<td>1.43</td>
<td>1.43</td>
<td>2.14</td>
<td>2.14</td>
</tr>
<tr>
<td>環境が乾燥・風化</td>
<td>3.87</td>
<td>3.87</td>
<td>5.28</td>
<td>5.28</td>
</tr>
<tr>
<td>軽部の舗装</td>
<td>4.32</td>
<td>4.59</td>
<td>5.74</td>
<td>6.27</td>
</tr>
</tbody>
</table>

表-19 オーバーレイに関する費用の平均値（軸重別）

<table>
<thead>
<tr>
<th>軸重 (t)</th>
<th>荷重制限値 (kN)</th>
<th>輸送費 (交通量)</th>
<th>輸送費 (中交通)</th>
<th>輸送費 (大交通)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.0</td>
<td>8.9</td>
<td>8.8</td>
<td>8.7</td>
<td>10.7</td>
</tr>
<tr>
<td>荷重制限値の有無</td>
<td>5.46</td>
<td>6.00</td>
<td>7.05</td>
<td>7.59</td>
</tr>
<tr>
<td>荷重制限値の有無</td>
<td>5.17</td>
<td>3.17</td>
<td>4.41</td>
<td>4.94</td>
</tr>
<tr>
<td>交通量が少ない</td>
<td>1.59</td>
<td>2.13</td>
<td>2.65</td>
<td>3.72</td>
</tr>
<tr>
<td>交通量が多い</td>
<td>7.05</td>
<td>7.05</td>
<td>8.45</td>
<td>8.65</td>
</tr>
<tr>
<td>環境が乾燥・風化</td>
<td>5.28</td>
<td>5.28</td>
<td>6.70</td>
<td>8.81</td>
</tr>
<tr>
<td>環境が乾燥・風化</td>
<td>6.70</td>
<td>7.76</td>
<td>8.81</td>
<td>8.81</td>
</tr>
<tr>
<td>環境が乾燥・風化</td>
<td>1.43</td>
<td>1.43</td>
<td>2.14</td>
<td>2.14</td>
</tr>
<tr>
<td>環境が乾燥・風化</td>
<td>3.87</td>
<td>3.87</td>
<td>5.28</td>
<td>5.28</td>
</tr>
<tr>
<td>軽部の舗装</td>
<td>4.32</td>
<td>4.59</td>
<td>5.74</td>
<td>6.27</td>
</tr>
</tbody>
</table>
参考文献

1. OECD, ROAD RESEARCH. "Impacts of Heavy Freight Vehicles". OECD. Paris, 1983
2. OECD, ROAD RESEARCH. "Heavy Freight Vehicles and Their Effects". Symposium, Reports - 3 volumes. OECD. Paris, 1977
6. Lister, N.W.; "Heavy Wheel Loads and Road Pavements - Damage Relationships and Economic Implications", OECD, ROAD RESEARCH. "Heavy Freight Vehicles and Their Effects". Symposium, 1977
8. PIARC. XVIIth World Road Congress. Technical and National Reports, Question V. PIARC. Sydney, 1983
19. PIARC. XVIIth World Road Congress. Question I. PIARC. Sydney, 1983
20. PIARC. XVIIth World Road Congress. Question V. PIARC. Sydney, 1983
25. 飯島尚; OECD の舗装関係レポートから, 舗装, 1983年9月, p.32~33
重交通道路の舗装用アスファルト
「セミブローンアスファルト」の開発

当協会において、昭和50年の研究着手以来、鋭意検討されてきた重交通道路の舗装用アスファルトについての研究の集大成です。本レポートが、アスファルト舗装の耐流動対策の一助となれば幸いです。

目次

1. 研究の概要
  1.1 文献調査
  1.2 室内試験
  1.3 試験舗装
  1.4 研究成果

2. 舗装の破損の原因と対策
  2.1 アスファルト舗装の破損の分類
  2.2 ひびわれ（Cracking）
  2.3 わだち離れ（Rutting）

3. セミブローンアスファルトの開発
  3.1 概 説
  3.2 市販ストレートアスファルトの60℃粘度調査
  3.3 製造方法の比較
  3.4 セミブローンアスファルトの試作
  3.5 試作アスファルトの特徴
  3.6 60℃粘度と他の物理性状の関係
  3.7 薄膜加熱による性状変化

4. セミブローンアスファルトを用いた混合物の性状
  4.1 概 説
  4.2 マーシャル安定度試験
  4.3 ハイアールトラッキング試験

次

4.4 高速曲げ試験
4.5 水浸マーシャル安定度試験
4.6 試験結果のまとめ
4.7 品質規格の設定

5. 試験舗装による検討
  5.1 概 説
  5.2 実施要領
  5.3 施工個所と舗装構成
  5.4 進捗調査の方法
  5.5 使用アスファルトの性状
  5.6 アスファルト混合物の性状
  5.7 第1次および第2次試験舗装の供用性状
  5.8 第3次試験舗装の供用性
  5.9 アンケート調査
  5.10 試験舗装のまとめ

6. す び

資 料

1. セミブローンアスファルトの規格（案）
  2.1 石油アスファルト絶対粘度試験方法
  2.2 60℃粘度試験の共通試験

3. 舗装用セミブローンアスファルトの舗装施工基準
瀬戸大橋と岡山県の幹線道路網

山田 直重
建設省中国地方建設局岡山国道工事務所長

＜瀬戸大橋＞
1万年前後数万年前、海面は現在より百数十m低く、瀬戸内海は陸地であったといわれている。その後の地殻変動により瀬戸内海が誕生し、本州と四国は海をへだてて分かたれることとなった。中国と四国の交流は陸続きであった古代から、現在の瀬戸大橋ルート（児島ー出雲）に沿った当時の尾根伝いを中心として行なわれてきたことが、ルート上の島々から出土する石器などから裏付けられているが、数万年を経た現代に、再びそのルートをたどって2つの陸地が結ばれようとしている。

瀬戸大橋は本州四国道路橋倉田島・坂出ルートの一般的総称で、世界第5位（明石海峡大橋ができれば第6位）の長大吊橋となる南南西瀬戸大橋（中港間1,100m）など6本の大橋が約9kmの瀬戸内海にかかり、前後の陸上部と合わせ約38kmで中国と四国を結ぶ。

昭和39年10月着手以来7年半、築航していた早島、坂出両IC、本土側道路部の桜田・柳田地区、鉄道部の瀬戸地区などの用地交渉が昨年から今年にかけて一応の結着をみ、比較的順調に進んできた海上部とあわせて目標である昭和63年春の完成にむけてラストスパートに入ったり段階である。

岡山県はこの瀬戸大橋の完成をバネとして、瀬戸内、山陰、南四国を縦域とする西日本的一大経済拠点として大きく飛躍しようとしているのであるが、それを実現するためには、瀬戸大橋を中心とする高速交通体系と、これと一体となって機能する地域交通体系の整備が不可欠の条件である。（図-1）

このため、現在岡山県南地域を中心として、各種の道路事業が精力的に行われているが、主要な道路について、その現状と展望を簡単紹介することとした。

＜瀬戸大橋から東へ＞
中四国経済は京阪神、さらに首都圏と、東部の方向との強い結びつきを持っているが、これの傾向は今後とも変わることはないだろう。したがって瀬戸大橋以東の道路整備は、大橋の経済効果を最大に発揮させるうえで重要な役割をなる。

図-2に示す通り、この役割は早島ICを経て国道2号、倉敷ICを経て山陽自動車道（以下山陽道という）がそれぞれ受けることとなる。

山陽道倉敷IC～岡山IC間は現在道路公団岡山工事務所において用地買収中であり、60年代半ば供用を目途に事業が進められている。岡山IC～備前IC間は60年2月に施工命令、6月にルート発表がなされ、道路公団備前工事務所において地元協議が始まったところである。通常のベースから推して完成は60年代末頃と思われる。

したがって瀬戸大橋を渡って山陽道で関西方面へというパターンは63年春には実現できないので、当分の間国道2号がその重責をなすこととなる。

2号岡山バイパスは全長38km、昭和38年着工以来23年を経たが未だ全通まで10kmを残す状況で、その整備が急がれている。現在、岡山県道路公社の有料道路ブルーハイウェイとの分岐君津JCTまで供用されており、当
面その先、県道西大寺山陽線までの5kmを瀬戸大橋にわせて供用し、この県道を経て暫定的にな現2号に結ぶ予定である。（写真-1）

＜瀬戸大橋から西へ＞

近畿圏ほど高い結びつきはないが、中国地方の中核都市広島や北九州間に連係を確保するうえで瀬戸大橋以西の幹線道路整備も急がれる。

この方面でもやや山陽道と国道2号にその役割を依存することになるが、東方向と対照的にこの方面は高速道路の整備が先行している。

山陽道は早島ICから倉敷JCTを経て玉島ICまでの間を道路公団岡山工事場所、玉島IC～福山東IC間を建設省岡山国道工事場所と福山工事場所がそれぞれ担当して、63年春瀬戸大橋と同時供用を目指し締意工事を進めている。（写真-2）

一方国道2号は、早島ICを経て倉敷市玉島までは岡山バイパス、玉島バイパスとして暫定ながらほぼ全線供
写真－2 山陽自動車道鴨方町内の土工工事

用されているが、玉島以西については、68年春の山陽道
供用後の推移をみながら、笠岡バイパス、金光、鴨方、
里庄各町域の4車線化を逐次進めて行くこととなるよう。
＜瀬戸大橋から北へ＞

中国地方は、その背景を形成する中国山脈によって山
陽と山陰に分けられ、経済活動の動線は瀬戸内海、日本
海に沿った東西方向が主流となっている。

昭和58年の中国縦貫道路全通により中国山地に散在する
中小都市の活性化が促され、南北両側域の一体化が進み
つつあるもの、それを上回る勢いでこれらの地域は近
隣方面との結びつきを強めており、東西方向が卓越する
という従来のパターンは変わっていない。

瀬戸内、山陽、山陰、四国が一体となった経済圏として発展
するためには、南北軸の強化が必要であり、瀬戸大橋の
完成はその大きなステップの1つとなるものである。さら
にこれを受けて、山陽と山陰を結ぶ幹線として中国横
断自動車道岡山米子線、国道53号、180号の整備が必要
のはいうまでもない。

中国横断道路岡山米子線は、米子～瀬戸間がすでに施工
命令を受けて用地買収、工事着工と進んでいるが、岡山
～落合間は去る1月の国幹審において整備計画が策定さ
れ、ようやく事業実施の第1歩を踏み出したばかりの状
態である。したがって目前に迫った瀬戸大橋完成にはと
うていて間に合わず、陰陽差異の動脈として機能するのは
当分先のこととなるよう。

一方国道53号、180号は、岡山～津山～鳥取、岡山～
新見～米子の各都市を結ぶ幹線として古くから重要な役
割を果たして来た。しかし、180号の1部を除いて1次改
繕は完了しているものの、山地部の危険ケ所も多く、近
年の交通量増大によって都市周辺部の混雑が著しい。

このため、岡山市域では53号岡山北バイパス、180号
岡山西バイパスが計画され、事業が進められているが、
諸々の制約からその進捗は必ずしも順調とはいいがたい。

山陰、岡山県北方方面から快速に瀬戸大橋へ乗り入れが
できるのは、現状では大橋完成数年待たねばならない
状況である。
＜おわりに＞

昭和44年頃、筆者は建設省道路局で第6次道路整備5
ケ年計画の策定作業の一端にたずさわっていた。5ケ年
計画のベースとなる道路整備の長期計画は、昭和60年度
を目標年次とし、7,600kmの国土開発幹線自動車道、本
州四国連絡橋など高速交通体系の確立、それらを補完す
る一般国道など幹線道路網の整備等により、国土の有効
利用、流通の合理化および国民生活環境の改善に寄与す
ることをその基本方針としていた。

そして今、昭和60年度末、本四児島坂出ルートとその
関連幹線道路網の現状はすでに述べた通りである。この
10数年間に、常時長期計画では予測もつかなかった多
くの社会、経済条件の変化があった。しかし、長期計画
にうたわれていた道路整備の長期計画の基本的方針は現
在においても変わりはないといってよろう。とすれば、
その目標とした整備水準を1日も早く実現すべく努力を
重ねてゆくことが、われわれに課せられた課題だと思う。
ダイナフレクトたわみ量

米国で開発されたたわみ量測定試験機（ダイナフレクト）を利用して測定するたわみ量のこと（以下，動的たわみ量という）。

試験機の原型は，トレーラー型で，動荷重発生装置とたわみ量検出部の制御装置と測定装置から構成されているが，日本では大半を車両本体に収録したタイプのものも使用されている。たわみ量の測定機器は，先ずアンバランスウエイトを回転させて動荷重を発生させ，これをソリッドタイヤで路面に伝達し，変形によって発生する加速度をアナログ値としてたわみ量に変換して記録するようになっている。

振動力及び振動数は，アンバランスウエイトを変えることによって(1). 500kgfで8Hz (2). 750kgfで12Hz (3). 1000kgfで20Hzに変えることができるが，通常は(1)の状態で測定されるものが多い。

動荷重の載荷位置及び測定箇所を示すと図-1のようになる。5個のセンサーによって測定したたわみ量とたわみ曲線を利用して以下に示すような各種の指標を計算し，舗装の構造解析に利用している。

(1) 最大たわみ量（Dynafl ect Maximum Deflection）

\[ \text{DMD} = W_1 \text{ (mm)} \]

(2) 表面たわみ指数（Surface Curvature Index）

\[ \text{SCI} = W_1 - W_2 \text{ (mm)} \]

(3) 路盤たわみ指数（Base Curvature Index）

\[ \text{BCI} = W_4 - W_5 \text{ (mm)} \]

(4) スプレッダビリティ（Spredability）

\[ S = \frac{1}{5W_1(W_1+W_2+W_3+W_4+W_5)} \times 100 \text{ (％)} \]

(5) たわみ面積の2/3の値（Area of half the deflected basin）

\[ A = \frac{1}{2}(W_1+2W_2+2W_3+2W_4+W_5) \times 300 \text{ (mm²)} \]

動的たわみ量とベンケルマンたわみ量（P=5t）の関係例を図-2に示す。これは，表層，基層の厚さが6～10cm，アスファルト安定処理やセメント安定処理厚が12～20cmの路盤からなるT2=19～27cm程度の路面で測定した例である。これより，両者の関係は舗装構造によって傾向は異なるが，DMDとの相関は比較的高いことがとおり，その値はベンケルマンたわみ量の1/10以下であることのオーダーである様子がわかる。

また，動的たわみ量の温度による影響例として図-3がある。これによれば，測定時期に差はあるものの，動的たわみ量に大きな差がない傾向にあり，各指標は舗装構造に分類して評価する必要が再考できる。

[小島逸平，熊谷道路㈱技術研究所]
用語の解説

油分離とステイン・インディックス（Stain Index）

オリエンシテスト（Oliensis Test）

アスファルトは、組成的になると、アスファルテン粒子を核とし、それに吸着したレジン、芳香族分が、アスファルテン表面を溶解してミセルを形成し、このミセル間には飽和成分のオイルが分散媒として存在している。

従って、これらの組成比が不適当なアスファルトでは、使用条件によって、供用中にオイルが分離しにじむ出る実用上好ましくない結果をもたらすことがある。

特に、この様々なアスファルトを、紙などの繊維樹脂のものや、石、砂、コンクリートなど多孔質なものにコーティングした場合、分離を生じ易く、にじみ出る油分が、製品を汚したり、表面のペインを変色させたり、あるいは、分離後のアスファルトの硬さや、接着力の低下により、トラブルとなることがある。

この様な、油のにじみ出し（Oil exudation）の性質を評価する方法に、ステイン・インディックスがある。

試験方法は、ASTM D 1328-81（Staining properties of asphaltic-modified pressure method）に規定されている。但し、この方法は、軟化点が55.6℃以上のあるアスファルト、又は65.6℃以下で、かつ針入度が35以下のあるアスファルトにのみ適用できる。

試験の概要は、直径約2 cm、高さ約4 cmの金属製モールドの半分程度まで、アスファルトを満、その表面に31枚のテスト紙（シガレットペーパータイプ）の層を接触させ、温度98.9 ± 1.6℃、圧力345 ± 21 KPa（50 ± 3 psi）の条件下に18時間放置する。試験後、テスト紙を取り出し、アスファルト中の油分のにじみ出しにより、汚れた紙の枚数を数える。この値を、ステイン・インディックスと呼ぶ。

適量の芳香族分を含み、アスファルテンを充分に分散しているストレートアスファルトの場合には、一般的にコロイド構造を有し安定しているため、油分離の問題はない。

しかし、ブレーンアスファルトは、アスファルテン量が多く、構造的にも不均一なため、高い値のステイン・インディックスを示すものもあり、ブレーン処理の程度や、原料油の性質によっても、かなり異なる。

また、このミセル間のオイル分離速度は、多孔質物質の孔径が小さい程、速くなり、オイル分の粘度にも支配されと言われている。

ソルタイプとゲルタイプなど、コロイド構造の異なる2種類のアスファルトを接触させた場合、一方のアスファルトから他方のアスファルトへ、油分が移動する現象が認められることがある。この様々なアスファルト間の接触適合性（contact compatibility）を評価する方法に、オリエンシテストがある。この性質は、アスファルトルーフィングを製造するさい、含浸用のストレートアスファルトと表面にコーティングするブレーンアスファルトの適合性を評価するのに有効である。

試験方法は、ASTM D 1370-84（Contact compatibility between asphaltic materials-Oliensis test）に規定されているが、その概要は以下の通りである。

硬い方のアスファルト（一般にブレーンアスファルト）を塗かせて、厚さ3～6mmの金属製の容器に流し込む。冷やした後、表面にタルク粉末をかけ、余剰のタルクを落す。もう一層タルクを45μmフィルムを通してから、0.004 g/cm3程度かけ、均一な細粉膜をつくる。このタルク粉の上に、溶融したもう一方のアスファルト（一般にストレートアスファルト）を注入すると、直径3mm程度の球形状に3個所に滴下する。この試料を、試験温度（アスファルトルーフィングの場合は50℃）に2時間保持する。試験後、放冷し、滴下したアスファルトの周辺にできたオイルリングの幅を0.1mm単位で測定する。

オリエンシテストの場合、一般に、このオイルリングの幅が0.5mm以下の場合は適合、0.5mm以上の場合は不適合と判断される。

このアスファルト間の接触適合性は、アスファルトのコロイド構造に関連しているため、硬い別の2種類のアスファルト間でも、コロイド構造の類似しているブレーンアスファルトどうし、又はストレートアスファルトどうしでは、油分の移動は殆どみられない。

Oliensisは、この接触適合性の試験の他に、アスファルト間の相溶性を評価するOliensis Spot Testを開発しているが、後者はAASHTO T 102-74スポットテストとして知られており、この解説で述べたものとは別の試験法である。

[井町弘光 昭和シェル石油株式中央研究所]

Vol. 29 No. 147 (1986年)
### アスファルトの需給・統計関係の解析

<table>
<thead>
<tr>
<th>表</th>
<th>題</th>
<th>執筆者</th>
<th>号数</th>
<th>発行年月（西暦）</th>
<th>ページ</th>
</tr>
</thead>
<tbody>
<tr>
<td>昭和60～64年度石油アスファルト需要見通しについて</td>
<td>資源エネルギー庁石油部アスファルト小委員会</td>
<td>144</td>
<td>81～85</td>
<td>昭和60.8（1985）</td>
<td></td>
</tr>
</tbody>
</table>

（統計資料：石油アスファルト需給統計その1（総括表）、同その2（内需、品種別表）各号巻末に掲載）

### 道路舗装・舗装用アスファルト

<table>
<thead>
<tr>
<th>表</th>
<th>題</th>
<th>執筆者</th>
<th>号数</th>
<th>発行年月（西暦）</th>
<th>ページ</th>
</tr>
</thead>
<tbody>
<tr>
<td>特集・歩行者等道路の舗装</td>
<td>生 内 哉 子</td>
<td>143</td>
<td>昭和60.4（1985）</td>
<td></td>
<td></td>
</tr>
<tr>
<td>特集・アスファルト舗装技術の高度化に向けて</td>
<td>多 田 宏 行</td>
<td>144</td>
<td>昭和60.8（1985）</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### 道路舗装の現状

<table>
<thead>
<tr>
<th>表</th>
<th>題</th>
<th>執筆者</th>
<th>号数</th>
<th>発行年月（西暦）</th>
<th>ページ</th>
</tr>
</thead>
<tbody>
<tr>
<td>長谷川康彦・南雲義夫</td>
<td>145</td>
<td>昭和60.12（1985）</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### 最近における維持修繕工法

<table>
<thead>
<tr>
<th>表</th>
<th>題</th>
<th>執筆者</th>
<th>号数</th>
<th>発行年月（西暦）</th>
<th>ページ</th>
</tr>
</thead>
<tbody>
<tr>
<td>飯田 保 三</td>
<td>146</td>
<td>昭和61.1（1986）</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
### アスファルト舗装技術研究グループ・研究報告

<table>
<thead>
<tr>
<th>表</th>
<th>題</th>
<th>執筆者</th>
<th>号数</th>
<th>ページ</th>
<th>発行年月（西暦）</th>
</tr>
</thead>
<tbody>
<tr>
<td>第20回</td>
<td>IRF（1984年）の発表論文から</td>
<td>阿部 賢哉</td>
<td>143</td>
<td>46</td>
<td>昭60.4（1985）</td>
</tr>
<tr>
<td></td>
<td>第10回</td>
<td>IRF世界道路会議論文の概要</td>
<td>野村 敏明</td>
<td>47～55</td>
<td></td>
</tr>
<tr>
<td>第21回</td>
<td>OECDのレポートから（1）路面のメンテナンス技術</td>
<td>阿部 賢哉</td>
<td>145</td>
<td>60</td>
<td>昭60.12（1985）</td>
</tr>
<tr>
<td></td>
<td>路面のメンテナンス技術</td>
<td>野々田 充</td>
<td>61～72</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### 講座・連載シリーズ

<table>
<thead>
<tr>
<th>表</th>
<th>題</th>
<th>執筆者</th>
<th>号数</th>
<th>ページ</th>
<th>発行年月（西暦）</th>
</tr>
</thead>
<tbody>
<tr>
<td>工事事務所長シリーズ</td>
<td>24. 難感 ～お水取りのことなど～</td>
<td>大石 久和</td>
<td>143</td>
<td>56～58</td>
<td>昭60.4（1985）</td>
</tr>
<tr>
<td></td>
<td>25. 鹿児島国道事務所の近話～</td>
<td>肥田 木修</td>
<td>144</td>
<td>77～78</td>
<td>昭60.8（1985）</td>
</tr>
<tr>
<td></td>
<td>26. 目下の国と南海道</td>
<td>泉家 壽二郎</td>
<td>146</td>
<td>73～75</td>
<td>昭60.12（1985）</td>
</tr>
<tr>
<td></td>
<td>27. 東北のウィーン</td>
<td>城野 求行</td>
<td>146</td>
<td>85～87</td>
<td>昭61.1（1986）</td>
</tr>
</tbody>
</table>

### 用語の解説

<table>
<thead>
<tr>
<th>表</th>
<th>題</th>
<th>執筆者</th>
<th>号数</th>
<th>ページ</th>
<th>発行年月（西暦）</th>
</tr>
</thead>
<tbody>
<tr>
<td>平坦・乗り心地係数</td>
<td></td>
<td></td>
<td>143</td>
<td>59</td>
<td>昭60.4（1985）</td>
</tr>
<tr>
<td></td>
<td>蒸発試験・蒸発後の針入度比</td>
<td></td>
<td></td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>BPN・PSV</td>
<td></td>
<td></td>
<td>144</td>
<td>79～80</td>
<td>昭60.8（1985）</td>
</tr>
<tr>
<td>膜厚梢加熱試験・回転式薄膜加熱試験</td>
<td></td>
<td></td>
<td>81</td>
<td></td>
<td></td>
</tr>
<tr>
<td>検査基準</td>
<td>井ノ口 弘光</td>
<td>145</td>
<td>76～77</td>
<td>昭60.12（1985）</td>
<td></td>
</tr>
<tr>
<td>比重・密度検定</td>
<td>小島 俊平 (石油アスファルト係)</td>
<td>78</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>太実際に・ペンドルマンビームによるたわみ量</td>
<td>(舗装係)</td>
<td>146</td>
<td>88</td>
<td>昭61.1（1986）</td>
<td></td>
</tr>
<tr>
<td>引火点・スポットテスト</td>
<td></td>
<td></td>
<td>89</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### その他一般（協会事業活動・時事解説・随想など）

<table>
<thead>
<tr>
<th>表</th>
<th>題</th>
<th>執筆者</th>
<th>号数</th>
<th>ページ</th>
<th>発行年月（西暦）</th>
</tr>
</thead>
<tbody>
<tr>
<td>会長就任のご挨拶</td>
<td>鹿島 寶</td>
<td>144</td>
<td>1</td>
<td>昭60.8（1985）</td>
<td></td>
</tr>
<tr>
<td>協会だより</td>
<td></td>
<td></td>
<td>88</td>
<td></td>
<td></td>
</tr>
<tr>
<td>総目次 第139号～第142号（昭和59年度）</td>
<td></td>
<td></td>
<td>144</td>
<td>88～87</td>
<td></td>
</tr>
</tbody>
</table>

### 昭和60年度に発行された本協会出版物

<table>
<thead>
<tr>
<th>書名</th>
<th>概要</th>
<th>発行年月（西暦）</th>
</tr>
</thead>
<tbody>
<tr>
<td>毎年（月）改定している定期刊行物</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ⅰ. アスファルト・ポケットブック（ポケットブック版・本文72ページ）</td>
<td></td>
<td>毎年8月発行</td>
</tr>
<tr>
<td>Ⅱ. 最近のアスファルト事情 （A5版・本文98ページ）</td>
<td></td>
<td>毎月25日発行</td>
</tr>
<tr>
<td>Ⅲ. 石油アスファルト統計月報 （A5版・16ページ）</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Vol. 29 No. 147（1986年）
石油アスファルト需給実績（総括表）
（単位：千 t）

<table>
<thead>
<tr>
<th>項目</th>
<th>供給</th>
<th>需要</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>期初在庫</td>
<td>生産</td>
</tr>
<tr>
<td>年度</td>
<td></td>
<td></td>
</tr>
<tr>
<td>52年度</td>
<td>256</td>
<td>4,790 (115.3)</td>
</tr>
<tr>
<td>53年度</td>
<td>287</td>
<td>5,229 (109.2)</td>
</tr>
<tr>
<td>54年度上期</td>
<td>297</td>
<td>2,624 (98.6)</td>
</tr>
<tr>
<td>54年度下期</td>
<td>348</td>
<td>2,440 (95.0)</td>
</tr>
<tr>
<td>54年度</td>
<td>297</td>
<td>5,064 (96.8)</td>
</tr>
<tr>
<td>55年度上期</td>
<td>236</td>
<td>2,374 (90.5)</td>
</tr>
<tr>
<td>55年度下期</td>
<td>278</td>
<td>2,346 (96.1)</td>
</tr>
<tr>
<td>55年度</td>
<td>236</td>
<td>4,720 (93.2)</td>
</tr>
<tr>
<td>56年度上期</td>
<td>240</td>
<td>2,244 (94.5)</td>
</tr>
<tr>
<td>56年度下期</td>
<td>266</td>
<td>2,354 (100.3)</td>
</tr>
<tr>
<td>56年度</td>
<td>240</td>
<td>4,598 (97.4)</td>
</tr>
<tr>
<td>57年度上期</td>
<td>226</td>
<td>2,158 (95.8)</td>
</tr>
<tr>
<td>57年度下期</td>
<td>240</td>
<td>2,466 (104.8)</td>
</tr>
<tr>
<td>57年度</td>
<td>226</td>
<td>4,624 (99.2)</td>
</tr>
<tr>
<td>58年度上期</td>
<td>213</td>
<td>2,392 (111.1)</td>
</tr>
<tr>
<td>58年度下期</td>
<td>241</td>
<td>2,555 (103.6)</td>
</tr>
<tr>
<td>58年度</td>
<td>213</td>
<td>4,947 (108.4)</td>
</tr>
<tr>
<td>7〜9月</td>
<td>301</td>
<td>1,303 (100.9)</td>
</tr>
<tr>
<td>59年度上期</td>
<td>226</td>
<td>2,541 (106.4)</td>
</tr>
<tr>
<td>59年度</td>
<td>196</td>
<td>514 (106.0)</td>
</tr>
<tr>
<td>10〜12月</td>
<td>252</td>
<td>1,453 (103.3)</td>
</tr>
<tr>
<td>60.1月</td>
<td>196</td>
<td>332 (106.1)</td>
</tr>
<tr>
<td>2月</td>
<td>243</td>
<td>376 (119.7)</td>
</tr>
<tr>
<td>3月</td>
<td>276</td>
<td>533 (102.1)</td>
</tr>
<tr>
<td>1〜3月</td>
<td>196</td>
<td>1,241 (108.0)</td>
</tr>
<tr>
<td>59年度下期</td>
<td>252</td>
<td>2,694 (105.4)</td>
</tr>
<tr>
<td>59年度</td>
<td>226</td>
<td>5,235 (105.9)</td>
</tr>
<tr>
<td>60.4月</td>
<td>240</td>
<td>416 (96.1)</td>
</tr>
<tr>
<td>5月</td>
<td>266</td>
<td>384 (97.2)</td>
</tr>
<tr>
<td>6月</td>
<td>321</td>
<td>346 (96.1)</td>
</tr>
<tr>
<td>4〜6月</td>
<td>240</td>
<td>1,145 (92.5)</td>
</tr>
<tr>
<td>7月</td>
<td>316</td>
<td>409 (95.2)</td>
</tr>
<tr>
<td>8月</td>
<td>269</td>
<td>449 (103.6)</td>
</tr>
<tr>
<td>9月</td>
<td>293</td>
<td>397 (90.0)</td>
</tr>
<tr>
<td>7〜9月</td>
<td>316</td>
<td>1,255 (96.3)</td>
</tr>
<tr>
<td>60年度上期</td>
<td>240</td>
<td>2,400 (94.5)</td>
</tr>
<tr>
<td>10月</td>
<td>294</td>
<td>425 (94.1)</td>
</tr>
<tr>
<td>11月</td>
<td>270</td>
<td>462 (94.9)</td>
</tr>
</tbody>
</table>

（注） (1)通産省エネルギー統計月報 60年11月確報
(2)四捨五入のため月報と一致しない場合がある。
石油アスファルト内需実績（品種別明細）
（単位：千t）

<table>
<thead>
<tr>
<th>年月</th>
<th>ストレート・アスファルト</th>
<th>燃焼用アスファルト</th>
<th>ブロークンアスファルト</th>
<th>合計</th>
<th>ストレート・アスファルト</th>
<th>燃焼用アスファルト</th>
<th>ブロークンアスファルト</th>
<th>合計</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>道路用</td>
<td>工業用</td>
<td>計</td>
<td>一般用</td>
<td>工業用</td>
<td>計</td>
<td>一般用</td>
<td>工業用</td>
</tr>
<tr>
<td>52年度</td>
<td>4,242</td>
<td>235</td>
<td>4,477</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>53年度</td>
<td>4,638</td>
<td>267</td>
<td>4,905</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>54年4月上期</td>
<td>2,309</td>
<td>100</td>
<td>2,409</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>54年4月下期</td>
<td>2,311</td>
<td>75</td>
<td>2,386</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>54年</td>
<td>4,620</td>
<td>175</td>
<td>4,795</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>55年4月上期</td>
<td>2,099</td>
<td>87</td>
<td>2,186</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>55年4月下期</td>
<td>2,134</td>
<td>96</td>
<td>2,230</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>55年</td>
<td>4,233</td>
<td>183</td>
<td>4,416</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>56年4月上期</td>
<td>1,977</td>
<td>103</td>
<td>2,080</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>56年4月下期</td>
<td>2,105</td>
<td>99</td>
<td>2,204</td>
<td>4</td>
<td>139</td>
<td>2,347</td>
<td></td>
<td></td>
</tr>
<tr>
<td>56年</td>
<td>4,082</td>
<td>202</td>
<td>4,284</td>
<td>4</td>
<td>274</td>
<td>4,562</td>
<td></td>
<td></td>
</tr>
<tr>
<td>57年4月上期</td>
<td>1,838</td>
<td>96</td>
<td>1,934</td>
<td>45</td>
<td>124</td>
<td>2,103</td>
<td></td>
<td></td>
</tr>
<tr>
<td>57年4月下期</td>
<td>2,105</td>
<td>88</td>
<td>2,193</td>
<td>142</td>
<td>136</td>
<td>2,471</td>
<td></td>
<td></td>
</tr>
<tr>
<td>57年</td>
<td>3,943</td>
<td>184</td>
<td>4,127</td>
<td>187</td>
<td>260</td>
<td>4,574</td>
<td></td>
<td></td>
</tr>
<tr>
<td>58年4月上期</td>
<td>1,917</td>
<td>83</td>
<td>2,000</td>
<td>236</td>
<td>121</td>
<td>2,357</td>
<td></td>
<td></td>
</tr>
<tr>
<td>58年4月下期</td>
<td>2,033</td>
<td>94</td>
<td>2,127</td>
<td>304</td>
<td>133</td>
<td>2,564</td>
<td></td>
<td></td>
</tr>
<tr>
<td>58年</td>
<td>3,950</td>
<td>177</td>
<td>4,127</td>
<td>540</td>
<td>254</td>
<td>4,921</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7～9月</td>
<td>1,033</td>
<td>41</td>
<td>1,074</td>
<td>216</td>
<td>60</td>
<td>1,350</td>
<td></td>
<td></td>
</tr>
<tr>
<td>59年4月上期</td>
<td>1,915</td>
<td>79</td>
<td>1,994</td>
<td>403</td>
<td>119</td>
<td>2,516</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12月</td>
<td>394</td>
<td>11</td>
<td>405</td>
<td>83</td>
<td>24</td>
<td>512</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10～12月</td>
<td>1,197</td>
<td>43</td>
<td>1,240</td>
<td>193</td>
<td>73</td>
<td>1,506</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60年1月</td>
<td>179</td>
<td>14</td>
<td>193</td>
<td>71</td>
<td>22</td>
<td>286</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2月</td>
<td>243</td>
<td>12</td>
<td>255</td>
<td>67</td>
<td>21</td>
<td>343</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3月</td>
<td>465</td>
<td>14</td>
<td>479</td>
<td>72</td>
<td>19</td>
<td>570</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1～3月</td>
<td>887</td>
<td>40</td>
<td>927</td>
<td>210</td>
<td>62</td>
<td>1,199</td>
<td></td>
<td></td>
</tr>
<tr>
<td>59年4月下期</td>
<td>2,084</td>
<td>83</td>
<td>2,167</td>
<td>403</td>
<td>135</td>
<td>2,705</td>
<td></td>
<td></td>
</tr>
<tr>
<td>59年</td>
<td>3,999</td>
<td>162</td>
<td>4,161</td>
<td>806</td>
<td>254</td>
<td>5,221</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60年4月</td>
<td>302</td>
<td>12</td>
<td>314</td>
<td>59</td>
<td>18</td>
<td>391</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5月</td>
<td>238</td>
<td>9</td>
<td>247</td>
<td>60</td>
<td>19</td>
<td>326</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6月</td>
<td>258</td>
<td>12</td>
<td>270</td>
<td>62</td>
<td>17</td>
<td>349</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4～6月</td>
<td>798</td>
<td>33</td>
<td>831</td>
<td>181</td>
<td>54</td>
<td>1,066</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7月</td>
<td>356</td>
<td>12</td>
<td>368</td>
<td>68</td>
<td>18</td>
<td>454</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8月</td>
<td>320</td>
<td>12</td>
<td>332</td>
<td>72</td>
<td>20</td>
<td>424</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9月</td>
<td>293</td>
<td>15</td>
<td>308</td>
<td>67</td>
<td>20</td>
<td>394</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7～9月</td>
<td>969</td>
<td>39</td>
<td>1,008</td>
<td>207</td>
<td>58</td>
<td>1,277</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60年4月下期</td>
<td>1,767</td>
<td>72</td>
<td>1,839</td>
<td>388</td>
<td>112</td>
<td>2,338</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10月</td>
<td>350</td>
<td>12</td>
<td>362</td>
<td>60</td>
<td>25</td>
<td>447</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11月</td>
<td>375</td>
<td>11</td>
<td>386</td>
<td>72</td>
<td>24</td>
<td>482</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(注) 1. 通産省エネルギー統計月報 60年11月号
2. 工業用ストレート・アスファルト、燃焼用アスファルト、ブロークンアスファルトは日本アスファルト協会調べ。
3. 道路用ストレート・アスファルト=内需分合計=（ブロークンアスファルト + 燃焼用アスファルト + 工業用ストレート・アスファルト）
4. 四捨五入のため月報と一致しない場合がある。

Vol. 29 No. 147（1986年）
<table>
<thead>
<tr>
<th>社名</th>
<th>住所</th>
<th>電話</th>
</tr>
</thead>
<tbody>
<tr>
<td>アジア石油株式会社</td>
<td>東京都港区芝浦1丁目1−1−1</td>
<td>03 (798) 3400</td>
</tr>
<tr>
<td>エッソ石油株式会社</td>
<td>東京都港区赤坂5丁目3−3−3</td>
<td>03 (584) 6211</td>
</tr>
<tr>
<td>富士石油株式会社</td>
<td>東京都千代田区大手町1丁目2−2−3</td>
<td>03 (211) 6531</td>
</tr>
<tr>
<td>出光興産株式会社</td>
<td>東京都千代田区丸の内3丁目1−1−1</td>
<td>03 (213) 3111</td>
</tr>
<tr>
<td>海南石油精製株式会社</td>
<td>東京都千代田区永田町2丁目2−4−3</td>
<td>03 (580) 3571</td>
</tr>
<tr>
<td>鹿島石油株式会社</td>
<td>東京都千代田区紀尾井町3−6−1</td>
<td>03 (265) 0411</td>
</tr>
<tr>
<td>興亜石油株式会社</td>
<td>東京都千代田区大手町2−6−2−2</td>
<td>03 (241) 8631</td>
</tr>
<tr>
<td>コスモ石油株式会社</td>
<td>東京都港区芝浦1丁目1−1−1</td>
<td>03 (798) 3200</td>
</tr>
<tr>
<td>共同石油株式会社</td>
<td>東京都千代田区永田町2丁目11−2−2</td>
<td>03 (593) 6055</td>
</tr>
<tr>
<td>極東石油工業株式会社</td>
<td>東京都千代田区大手町1丁目7−2−2</td>
<td>03 (270) 0841</td>
</tr>
<tr>
<td>三菱石油株式会社</td>
<td>東京都港区虎ノ門1丁目2−2−4</td>
<td>03 (595) 7069</td>
</tr>
<tr>
<td>モービル石油株式会社</td>
<td>東京都千代田区大手町1丁目7−2−2</td>
<td>03 (244) 4691</td>
</tr>
<tr>
<td>日本アスファルト株式会社</td>
<td>東京都千代田区平河町2丁目7−6−1</td>
<td>03 (234) 5021</td>
</tr>
<tr>
<td>日本鉱業株式会社</td>
<td>東京都港区虎ノ門2丁目10−1−1</td>
<td>03 (582) 2111</td>
</tr>
<tr>
<td>日本石油株式会社</td>
<td>東京都港区西新橋1丁目3−12−1</td>
<td>03 (502) 1111</td>
</tr>
<tr>
<td>日本石油精製株式会社</td>
<td>東京都港区西新橋1丁目3−12−1</td>
<td>03 (502) 1111</td>
</tr>
<tr>
<td>三菱化工業株式会社</td>
<td>東京都千代田区丸の内1丁目4−2−2</td>
<td>03 (284) 1911</td>
</tr>
<tr>
<td>西部石油株式会社</td>
<td>東京都千代田区大手町1丁目1−1−2</td>
<td>03 (215) 3081</td>
</tr>
<tr>
<td>昭和ジェル石油株式会社</td>
<td>東京都千代田区霞が関3丁目2−2−5</td>
<td>03 (580) 0111</td>
</tr>
<tr>
<td>昭和四日市石油株式会社</td>
<td>東京都千代田区丸の内2丁目7−3−3</td>
<td>03 (215) 1645</td>
</tr>
<tr>
<td>東亜燃料工業株式会社</td>
<td>東京都千代田区大手町1丁目1−1−1</td>
<td>03 (286) 5111</td>
</tr>
<tr>
<td>東北石油株式会社</td>
<td>宮城県仙台市港5丁目1−1−1</td>
<td>02236 (3) 1111</td>
</tr>
</tbody>
</table>

【ディーラー】

- 北海道
  レキシエイ札幌支店 (060) 札幌市中央区大通西10−4 011 (281) 3906 日アス
  中西瀧青野札幌出張所 (060) 札幌市中央区北2条西2 011 (231) 2895 日石
  青野南部商会札幌営業所 (060) 札幌市中央区北2条西2−15 011 (231) 7587 日石
  レキシエイ商事株式会社 (060) 札幌市中央区北4条西12 011 (231) 5931 出光

- 北海道
  株式会社ロード資材 (060) 札幌市中央区北1条西1−1−11 011 (281) 3976 コスモ
  東光商事株式会社札幌営業所 (060) 札幌市中央区南大通り西7 011 (261) 7957 三石
  トーアス札幌営業所 (060) 札幌市中央区北2条西2 011 (281) 2361 共石
  蛭井石油株式会社 (060) 札幌市中央区南4条西1−1292−4 011 (518) 2771 コスモ
<table>
<thead>
<tr>
<th>社名</th>
<th>住所</th>
<th>電話</th>
</tr>
</thead>
<tbody>
<tr>
<td>東北</td>
<td></td>
<td></td>
</tr>
<tr>
<td>アサヒレキセイ株式会社</td>
<td>青森市中央区中央2-3-3</td>
<td>0222（66）1101日アス</td>
</tr>
<tr>
<td>鮭木製造株式会社</td>
<td>青森市中央区中央2-1-17</td>
<td>0222（22）9203共石</td>
</tr>
<tr>
<td>カメイ株式会社</td>
<td>青森市市分町3-1-18</td>
<td>0222（64）6111日石</td>
</tr>
<tr>
<td>軽石産業株式会社</td>
<td>青森市中央区中央2-1-7</td>
<td>0222（57）1231三石</td>
</tr>
<tr>
<td>中西鉱業株式会社</td>
<td>青森市中央区中央2-1-30</td>
<td>0222（23）4866日石</td>
</tr>
<tr>
<td>有限会社新特産株式会社</td>
<td>青森市中央区中央2-1-17</td>
<td>0222（23）1011日石</td>
</tr>
<tr>
<td>亀油販売株式会社</td>
<td>青森市中央区国分町3-3-1</td>
<td>0222（25）1491三石</td>
</tr>
<tr>
<td>新特産業株式会社</td>
<td>青森市中央区国分町3-3-5</td>
<td>0222（63）5951三石</td>
</tr>
<tr>
<td>竹中産業株式会社</td>
<td>青森市中央区国分町1-4-2</td>
<td>0252（46）2770昭和シール</td>
</tr>
<tr>
<td>常盤商事株式会社</td>
<td>青森市中央区上杉1-8-19</td>
<td>0222（24）1151三石</td>
</tr>
<tr>
<td>東</td>
<td></td>
<td></td>
</tr>
<tr>
<td>アサヒレキセイ株式会社</td>
<td>東京都中央区八丁堀3-3-5</td>
<td>03（551）8011日アス</td>
</tr>
<tr>
<td>朝日産業株式会社</td>
<td>東京都中央区大崎栄町2-7-9</td>
<td>03（669）7878日アス</td>
</tr>
<tr>
<td>アスファルト産業株式会社</td>
<td>東京都中央区八丁堀4-11-2</td>
<td>03（553）3001昭和シール</td>
</tr>
<tr>
<td>富士興業株式会社</td>
<td>東京都中央区新宿1-2-4-3</td>
<td>03（580）5211日アス</td>
</tr>
<tr>
<td>富士鉱油株式会社</td>
<td>東京都中央区新宿4-26-5</td>
<td>03（432）2891コモ</td>
</tr>
<tr>
<td>富士石油販売株式会社</td>
<td>東京都中央区新宿1-13-12</td>
<td>03（274）2061共石</td>
</tr>
<tr>
<td>富士油業株式会社</td>
<td>東京都中央区新宿1-8-7</td>
<td>03（475）3501日アス</td>
</tr>
<tr>
<td>バシフィック石油商事株式会社</td>
<td>東京都中央区新宿1-17-2</td>
<td>03（661）4951モービル</td>
</tr>
<tr>
<td>伊藤忠燃料株式会社</td>
<td>東京都中央区赤坂2-17-19</td>
<td>03（580）8555共石</td>
</tr>
<tr>
<td>関東アスファルト株式会社</td>
<td>埼玉県浦和市南町4-26-19</td>
<td>0488（22）1661昭和シール</td>
</tr>
<tr>
<td>株式会社木部商工会</td>
<td>東京都中央区八丁堀4-1-2</td>
<td>03（552）3191共石</td>
</tr>
<tr>
<td>国光商品株式会社</td>
<td>東京都中央区八丁堀1-7-1</td>
<td>03（363）2381出光</td>
</tr>
<tr>
<td>丸紅エネルギー株式会社</td>
<td>東京都中央区新宿田代町3-7-1</td>
<td>03（293）1111モービル</td>
</tr>
<tr>
<td>三菱商事株式会社</td>
<td>東京都中央区新宿1-2-6-3</td>
<td>03（210）6290三石</td>
</tr>
<tr>
<td>三井物産石油株式会社</td>
<td>東京都中央区新宿田代町4-3</td>
<td>03（293）7111極東石</td>
</tr>
<tr>
<td>中西電産株式会社</td>
<td>東京都中央区八重洲1-2-1</td>
<td>03（272）3471日石</td>
</tr>
<tr>
<td>株式会社南海商工会</td>
<td>東京都中央区新宿1-3-4-2</td>
<td>03（213）5871日石</td>
</tr>
<tr>
<td>日東石油販売株式会社</td>
<td>東京都中央区新宿2-8-3</td>
<td>03（551）6101昭和シール</td>
</tr>
<tr>
<td>日東商事株式会社</td>
<td>東京都中央区新宿3-39-4</td>
<td>03（915）7151昭和シール</td>
</tr>
<tr>
<td>瀬戸商事株式会社</td>
<td>東京都中央区新宿2-16-3</td>
<td>03（271）7691出光</td>
</tr>
<tr>
<td>菱東石油販売株式会社</td>
<td>東京都港区芝5-29-20</td>
<td>03（798）5311三石</td>
</tr>
<tr>
<td>菱洋通商株式会社</td>
<td>東京都中央区銀座6-7-18</td>
<td>03（571）5921三石</td>
</tr>
<tr>
<td>菱沢工業株式会社</td>
<td>東京都新宿区新宿1-20-2</td>
<td>03（345）8205三石</td>
</tr>
<tr>
<td>三德商事株式会社</td>
<td>東京都中央区新宿11-10-11</td>
<td>03（254）9291昭和シール</td>
</tr>
<tr>
<td>東洋商事株式会社</td>
<td>東京都中央区新宿1-7-2</td>
<td>03（551）7131コスモ</td>
</tr>
<tr>
<td>新日本商事株式会社</td>
<td>東京都中央区新宿1-2-6-3</td>
<td>03（294）3961昭和シール</td>
</tr>
<tr>
<td>住友商事昭和シール株式会社</td>
<td>東京都新宿区新宿2-6-1</td>
<td>03（345）904出光</td>
</tr>
<tr>
<td>沖縄商事株式会社</td>
<td>東京都中央区新宿1-7-2</td>
<td>03（245）1632三石</td>
</tr>
<tr>
<td>竹中産業株式会社</td>
<td>東京都中央区新宿1-5-5</td>
<td>03（251）8185昭和シール</td>
</tr>
<tr>
<td>東光商事株式会社</td>
<td>東京都中央区京橋1-5-12</td>
<td>03（274）2751三石</td>
</tr>
<tr>
<td>株式会社クーロアス</td>
<td>東京都新宿区新宿2-7-1</td>
<td>03（342）6391共石</td>
</tr>
<tr>
<td>社名</td>
<td>住所</td>
<td>電話</td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>東京富士興産販売株式会社</td>
<td>東京都港区虎ノ門1-13-4</td>
<td>03 (591) 3401 日アス</td>
</tr>
<tr>
<td>東京レキシィ株式会社</td>
<td>東京都渋谷区恵比寿1-9-12</td>
<td>03 (496) 8691 日アス</td>
</tr>
<tr>
<td>東新溝青株式会社</td>
<td>東京都中央区日本橋2-1-5</td>
<td>03 (273) 3551 日石</td>
</tr>
<tr>
<td>東洋国際石油株式会社</td>
<td>東京都中央区八丁堀3-3-5</td>
<td>03 (552) 8151 日アス</td>
</tr>
<tr>
<td>東和産業株式会社</td>
<td>東京都板橋区坂下3-29-11</td>
<td>03 (988) 3101 三共化光</td>
</tr>
<tr>
<td>梅本石油株式会社</td>
<td>東京都新宿区陽明町9</td>
<td>03 (269) 7541 コスモ</td>
</tr>
<tr>
<td>ユニ石油株式会社</td>
<td>東京都千代田区神田東神田町30</td>
<td>03 (256) 3441 昭和シェル</td>
</tr>
<tr>
<td>渡辺油化興業株式会社</td>
<td>東京都港区赤坂3-21-21</td>
<td>03 (582) 6411 昭和シェル</td>
</tr>
</tbody>
</table>

**中部**

<table>
<thead>
<tr>
<th>社名</th>
<th>住所</th>
<th>電話</th>
</tr>
</thead>
<tbody>
<tr>
<td>アサヒレキシー㈱名古屋支店</td>
<td>名古屋市昭和区塩付通4-9</td>
<td>052 (861) 1111 日アス</td>
</tr>
<tr>
<td>丸福石油産業株式会社</td>
<td>富山県高岡市美幸町2-1-28</td>
<td>0766 (22) 2860 昭和シェル</td>
</tr>
<tr>
<td>松村物産株式会社</td>
<td>石川県金沢市広岡2-1-27</td>
<td>0762 (21) 6121 三石</td>
</tr>
<tr>
<td>三谷商事㈱</td>
<td>福井県福井市中央3-1-5</td>
<td>0776 (20) 3111 モービル</td>
</tr>
<tr>
<td>名古屋富士興産販売㈱</td>
<td>名古屋市西区城西4-28-11</td>
<td>052 (521) 9391 日アス</td>
</tr>
<tr>
<td>中西瀧青㈱名古屋営業所</td>
<td>名古屋市中区錦町1-20-6</td>
<td>052 (211) 5011 日石</td>
</tr>
<tr>
<td>三徳商事㈱静岡営業所</td>
<td>静岡市駿府町11-12</td>
<td>0542 (55) 2588 昭和シェル</td>
</tr>
<tr>
<td>三徳商事㈱名古屋支店</td>
<td>名古屋市中区則武1-10-6</td>
<td>052 (462) 2781 昭和シェル</td>
</tr>
<tr>
<td>株式会社三油商會</td>
<td>名古屋市中区丸の内2-1-5</td>
<td>052 (231) 7721 日アス</td>
</tr>
<tr>
<td>株式会社澤田商行</td>
<td>名古屋市中区富川町1-1</td>
<td>052 (361) 7151 コスモ</td>
</tr>
<tr>
<td>新東亜交易㈱名古屋支店</td>
<td>名古屋市中区名駅3-28-12</td>
<td>052 (561) 3514 日アス</td>
</tr>
<tr>
<td>静岡鉱油株式会社</td>
<td>静岡県清水市水師町1575</td>
<td>0543 (66) 1195 モービル</td>
</tr>
<tr>
<td>竹中産業㈱福井営業所</td>
<td>福井県福井市手2-4-26</td>
<td>0766 (22) 1565 昭和シェル</td>
</tr>
<tr>
<td>株式会社田中石油店</td>
<td>福井県福井市毛矢2-9-1</td>
<td>0776 (35) 1721 昭和シェル</td>
</tr>
<tr>
<td>富安産業株式会社</td>
<td>富山市若竹町2-121</td>
<td>0764 (29) 2298 昭和シェル</td>
</tr>
</tbody>
</table>

**近畿**

<table>
<thead>
<tr>
<th>社名</th>
<th>住所</th>
<th>電話</th>
</tr>
</thead>
<tbody>
<tr>
<td>赤馬瀧青工業株式会社</td>
<td>大阪市淀川区中津3-10-4-304</td>
<td>06 (374) 2271 モービル</td>
</tr>
<tr>
<td>アサヒレキシイ㈱大阪支店</td>
<td>大阪市西区南堀江4-17-18</td>
<td>06 (538) 2731 日アス</td>
</tr>
<tr>
<td>千代田瀧青株式会社</td>
<td>大阪市北区東天満2-8-8</td>
<td>06 (358) 5531 三石</td>
</tr>
<tr>
<td>飯野産業㈱神戸営業所</td>
<td>兵庫県神戸市中央区北試町98</td>
<td>078 (391) 8965 共石</td>
</tr>
<tr>
<td>富士アスファルト販売株式会社</td>
<td>大阪市西区京町堀3-2-19</td>
<td>06 (441) 5195 日アス</td>
</tr>
<tr>
<td>平和石油株式会社</td>
<td>大阪市北区中之島3-6-32</td>
<td>06 (443) 2771 昭和シェル</td>
</tr>
<tr>
<td>平井商事株式会社</td>
<td>大阪市北区長堀橋筋1-43</td>
<td>06 (252) 5856 日アス</td>
</tr>
<tr>
<td>木曾通産㈱大阪支店</td>
<td>大阪市西区九条南4-11-12</td>
<td>06 (581) 7216 日アス</td>
</tr>
<tr>
<td>株式会社松宮物産</td>
<td>大阪市北区中央2733</td>
<td>07492 (3) 1608 昭和シェル</td>
</tr>
<tr>
<td>丸和鉱油株式会社</td>
<td>大阪市北区区端2-14-17</td>
<td>06 (301) 8073 コスモ</td>
</tr>
<tr>
<td>三菱商事㈱大阪支社</td>
<td>大阪市北区生島町1-1-5</td>
<td>06 (343) 1111 三石</td>
</tr>
<tr>
<td>株式会社ナカムラ</td>
<td>兵庫県尼崎市尼崎市町町14</td>
<td>0792 (85) 2551 共石</td>
</tr>
<tr>
<td>中西瀧青㈱大阪営業所</td>
<td>大阪市北区西天満3-11-17</td>
<td>06 (303) 201 日石</td>
</tr>
<tr>
<td>大阪アスファルト株式会社</td>
<td>大阪市西区豊崎5-8-2</td>
<td>06 (372) 0031 光光</td>
</tr>
<tr>
<td>株式会社菱原産業</td>
<td>兵庫県尼崎市市広沢区西夢台7-140</td>
<td>0792 (39) 1344 共石</td>
</tr>
<tr>
<td>三徳商事株式会社</td>
<td>大阪市淀川区新高4-1-3</td>
<td>06 (394) 1551 昭和シェル</td>
</tr>
<tr>
<td>阿興産業株式会社</td>
<td>兵庫県西宮市長浜町2-1</td>
<td>0798 (22) 2701 三石</td>
</tr>
<tr>
<td>昭和シェル石油大阪発売所</td>
<td>大阪市港区南町1-11-11</td>
<td>06 (584) 0681 昭和シェル</td>
</tr>
<tr>
<td>社名</td>
<td>住所</td>
<td>電話</td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>横田瀧背興業株式会社</td>
<td>(672)兵庫県姫路市飾磨区南細江995</td>
<td>0792 (33) 0555 共 石</td>
</tr>
<tr>
<td>アサヒレキシー姫広島支店</td>
<td>(730)広島市田中町5－9</td>
<td>0822 (44) 6262 日 アス</td>
</tr>
<tr>
<td>富士商株式会社</td>
<td>(756)山口県小野市稲荷町6539</td>
<td>08368 (3) 3210 昭和シェル</td>
</tr>
<tr>
<td>共和産業株式会社</td>
<td>(700)岡山県岡山市富田町2－10－4</td>
<td>0862 (33) 1500 共 石</td>
</tr>
<tr>
<td>信和興業株式会社</td>
<td>(700)岡山県岡山市西高松636－4</td>
<td>0862 (41) 3691 三 石</td>
</tr>
<tr>
<td>中国富士アスファルト株式会社</td>
<td>(711)岡山県倉敷市児島味野浜の宮4051</td>
<td>0864 (73) 0380 日 アス</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>社名</th>
<th>住所</th>
<th>電話</th>
</tr>
</thead>
<tbody>
<tr>
<td>アサヒレキシー姫九州支店</td>
<td>(810)福岡県中央区鳥取1－3－52</td>
<td>092 (771) 7436 日 アス</td>
</tr>
<tr>
<td>畑穂油株式会社</td>
<td>(804)北九州市戸畑区牧山新町1－40</td>
<td>092 (871) 3625 コスモ</td>
</tr>
<tr>
<td>平和石油株式会社</td>
<td>(760)高松市番町5－6－26</td>
<td>0878 (31) 7255 昭和シェル</td>
</tr>
<tr>
<td>今別府産業株式会社</td>
<td>(890)鹿児島市新栄町15－7</td>
<td>0992 (56) 4111 共 石</td>
</tr>
<tr>
<td>伊藤忠燃料株式会社</td>
<td>(812)福岡市博多区博多駅前3－2－8</td>
<td>092 (471) 3877 共 石</td>
</tr>
<tr>
<td>株式会社カナダ</td>
<td>(892)鹿児島市住吉町1－3</td>
<td>0992 (24) 5111 昭和シェル</td>
</tr>
<tr>
<td>丸菱株式会社</td>
<td>(812)福岡市博多区博多駅前4－3－22</td>
<td>092 (431) 7561 昭和シェル</td>
</tr>
<tr>
<td>中西瀧青株式会社</td>
<td>(810)福岡市中央区新神4－1－18</td>
<td>092 (771) 6881 日 石</td>
</tr>
<tr>
<td>鶴南部商会株式会社</td>
<td>(810)福岡市中央区舞鶴1－1－5</td>
<td>092 (721) 4838 日 石</td>
</tr>
<tr>
<td>西岡商事株式会社</td>
<td>(764)香川県仲多度郡多度津町冬条3－1</td>
<td>08773 (3) 1001 三 石</td>
</tr>
<tr>
<td>萩油販売九州支店</td>
<td>(805)北九州市八幡東区山王1－17－11</td>
<td>093 (661) 4068 三 石</td>
</tr>
<tr>
<td>三協商事株式会社</td>
<td>(770)徳島市万代町5－8</td>
<td>0886 (53) 5131 日 アス</td>
</tr>
<tr>
<td>サンヨウ株式会社</td>
<td>(815)福岡市南区玉川町4－30</td>
<td>092 (541) 7615 日 アス</td>
</tr>
</tbody>
</table>

編集委員

<table>
<thead>
<tr>
<th>姓</th>
<th>名</th>
</tr>
</thead>
<tbody>
<tr>
<td>多田</td>
<td>宏行</td>
</tr>
<tr>
<td>萩原</td>
<td>浩</td>
</tr>
<tr>
<td>松野</td>
<td>三朗</td>
</tr>
<tr>
<td>安座</td>
<td>上陽三</td>
</tr>
<tr>
<td>今井</td>
<td>武志</td>
</tr>
<tr>
<td>真山</td>
<td>治信</td>
</tr>
<tr>
<td>林</td>
<td>誠之</td>
</tr>
<tr>
<td>阿部</td>
<td>忠行</td>
</tr>
<tr>
<td>井町</td>
<td>弘光</td>
</tr>
<tr>
<td>白神</td>
<td>健児</td>
</tr>
<tr>
<td>藤井</td>
<td>彰夫</td>
</tr>
<tr>
<td>藤井</td>
<td>浩行</td>
</tr>
<tr>
<td>菅井</td>
<td>孝雄</td>
</tr>
<tr>
<td>太田</td>
<td>健二</td>
</tr>
<tr>
<td>戸田</td>
<td>透</td>
</tr>
<tr>
<td>真柴</td>
<td>和昌</td>
</tr>
<tr>
<td>安崎</td>
<td>裕</td>
</tr>
<tr>
<td>河野</td>
<td>宏</td>
</tr>
<tr>
<td>南雲</td>
<td>貞夫</td>
</tr>
<tr>
<td>飯島</td>
<td>尚</td>
</tr>
<tr>
<td>小島</td>
<td>逸平</td>
</tr>
<tr>
<td>服部</td>
<td>亮二</td>
</tr>
</tbody>
</table>

アスファルト 第147号
昭和61年4月発行
社団法人 日本アスファルト協会
〒105東京都港区虎ノ門2－6－7 TEL 03-502-3956
本誌広告一括取扱 株式会社 廣瀬
〒104東京都中央区銀座8－2－9 TEL 03-571-0977代

ASPHALT
Vol. 29 No. 147 APRIL 1986
Published by THE JAPAN ASPHALT ASSOCIATION