アスファルト

166

<table>
<thead>
<tr>
<th>特集・舗装技術に関する雑感</th>
<th>民間における舗装の研究活動</th>
</tr>
</thead>
<tbody>
<tr>
<td>特集にあたって</td>
<td>過去・現在・未来</td>
</tr>
<tr>
<td>河野 宏 1</td>
<td>荒井 孝雄 2</td>
</tr>
<tr>
<td>阿部 博 3</td>
<td>丹治 和裕 19</td>
</tr>
<tr>
<td>緒方 美民 3</td>
<td>阿部 誠 20</td>
</tr>
<tr>
<td>阿部 誠 20</td>
<td>永遠の課題・供用性評価</td>
</tr>
<tr>
<td>施設研究の歴史</td>
<td>南雲 貞夫 21</td>
</tr>
<tr>
<td>施設バイ贮蔵</td>
<td>野々田 充 22</td>
</tr>
<tr>
<td>施設のアスファルト30年</td>
<td>阿部 健一郎 23</td>
</tr>
<tr>
<td>施設と舗装の狭間で</td>
<td>加賀 譲 7</td>
</tr>
<tr>
<td>北村 幸治 8</td>
<td>複合化について</td>
</tr>
<tr>
<td>舗装研究へ</td>
<td>野村 敏明 24</td>
</tr>
<tr>
<td>施設研究へ</td>
<td>羽山 高義 25</td>
</tr>
<tr>
<td>舗装と再生技術</td>
<td>輪身（化学から土木へ）</td>
</tr>
<tr>
<td>久下 晴巳 9</td>
<td>原 富 26</td>
</tr>
<tr>
<td>振り向かそことに…</td>
<td>若造のたわ言</td>
</tr>
<tr>
<td>高野 漾 10</td>
<td>藤田 仁 27</td>
</tr>
<tr>
<td>舗装技術の魅力及びPR</td>
<td>藤田 豊 28</td>
</tr>
<tr>
<td>小島 逸平 12</td>
<td>増山 幸衛 29</td>
</tr>
<tr>
<td>阿部 健一郎 23</td>
<td>松野 三朗 30</td>
</tr>
<tr>
<td>舗装技術</td>
<td>一技術者と品質管理</td>
</tr>
<tr>
<td>小林 賢平 13</td>
<td>山下 弘美 31</td>
</tr>
<tr>
<td>阿部 健一郎 23</td>
<td>山之口 浩 32</td>
</tr>
<tr>
<td>吉村 俊行 36</td>
<td>吉村 咲之 34</td>
</tr>
</tbody>
</table>

各国オーガニゼーション

- 姫野賢治 35

工事業者・従業員向け

- 立田 仁・小林 孝行・増山 幸衛 36

会員の解説

- 中村 俊行 60

広告

- 小島 逸平 64

取引情報

- 高橋 正明 67

ジャパンアスファルト協会

社団法人 日本アスファルト協会

JAPAN ASPHALT ASSOCIATION
第62回 アスファルトゼミナール開催のご案内

第62回 アスファルトゼミナール開催のご案内

敬具

1. 主催 社団法人 日本アスファルト協会
2. 協賛 社団法人 日本アスファルト乳剤協会
3. 後援 建設省、社団法人 日本道路建設業協会、社団法人 日本アスファルト合材協会、
 社団法人 日本道路建設業協会九州支部、アスファルト合材九州地方連絡協議会
 社団法人 福岡市建築協会
4. 開催日時 平成3年2月8日（金）9：30～16：30
5. 開催場所 電気ホール（案内図参照）福岡市中央区港北通2-1-82 092-851-4511
6. 内容 裏面「プログラム」参照
7. 申込方法 平成3年1月25日までに下記参加申し込み書に必要事項をご記入のうえ会費を添えて現金留置でお申し込み下さい。申し込み受付は第2回講義後にお届けいたします。
8. 申込先 社団法人 日本アスファルト協会 アスゼミ係
 〒105 東京都港区虎ノ門2-6-7 和光第10ビル 03-3502-3956
9. 参加費 4,000円
10. 参加人数 600名（締切日以前でも定員になり次第締め切らせていただきます。）
11. その他
 ①払い込みあらかじめの参加費は、不参加の場合でも払い戻し致しません。参加者の変更をすることが差し支えありません。なお、不参加者には後日テキストを送付致します。
 ②宿泊の有無は、宿泊しながら弊協会では致しませんので、各自にてお願いします。
 なお、ゼミナール開催前後は、大学受験のため宿泊施設の取得が困難であると予想されますので、早めにお手配下さい。
 ③会場には駐車設備がありませんので、車でのご来場はご遠慮願います。

第62回アスファルトゼミナール参加申込書

<table>
<thead>
<tr>
<th>勤務先</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>所在地</td>
<td>〒</td>
<td>Tel</td>
</tr>
<tr>
<td>申込責任者氏名</td>
<td></td>
<td></td>
</tr>
<tr>
<td>所属・役職</td>
<td></td>
<td></td>
</tr>
<tr>
<td>参加人数</td>
<td>合計</td>
<td>名</td>
</tr>
</tbody>
</table>

交通のご案内

（バス）
JR博多駅前→電気ホール（所要15分）
のりば③番（③番後の全てのバス）
（アクセス）
JR博多駅→電気ホール（所要5分）
西鉄福岡駅→電気ホール（所要5分）
（徒歩）
地下鉄天神駅→電気ホール（所要10分）
プログラム

開催月日　平成3年2月8日（金）　9：30～16：30
開催場所　電気ホール
　福岡市中央区渡辺通2－1－82　☎092-851-4511

1．挨拶　9：30～9：42
　社団法人 日本アスファルト協会会長　高橋　一
　建設省九州地方建設局長　川井　優
　福岡県土木部長　南　旭
　福岡市土木局長　平山　幸生

2．講演にあたって　9：42～10：00
　社団法人 日本アスファルト協会名誉会長　谷津　正三

3．九州圏の道路整備計画について　10：00～10：40
　建設省九州地方建設局道路部長　山田　功

4．舗装工事の技術的現況と課題　10：40～12：00
　～合材製造等施工技術とその高度化について～
　日本舗装(株)技術部長　山之内　浩
　（昼食休憩　12：00～12：50）

5．吉野ヶ里遺跡と幻の邪馬台国　12：50～13：50
　佐賀県教育委員会文化財課長　高島　信平

6．道路舗装の維持修繕工法の最近の動向　13：50～15：10
　建設省道路局国道第一課課長補佐　桐越　信

7．アスファルト乳剤工法 ～昔、今、そしてこれから～　15：10～16：30
　社団法人 日本アスファルト乳剤協会技術委員長　太田　健二
　（講師は都合で変更することがあります）
特集にあたって

河野 宏
（旧）日本アスファルト協会編集委員長

今回の特集は、各界における研究活動シリーズの第３弾にあたるもので、「舗装技術に関する雑感・民間における舗装の研究活動」である。このシリーズは、北海道大学の姫野明教授の発案で、全国の大学の舗装研究者の方々に研究を始めた動機これまでの研究の内容などを書いて頂いたことからスタートした。大学の舗装研究者に関する情報を官、民の人にも提供し、学・官・民の接点の契機にもなり、少しでも舗装界全体の活性化に役立てば、というのがその目的であった。

幸いにしてこの企画は成功し予想以上に好評であるということで、No.163号では広官庁関係の人々に焦点をあてて特集を組んだ。そして第２回の特集も好評であったことおよび「学・官」やって「民」をやらないのはバランスを欠くということから、今回の「民」特集となったわけである。

この種の特集を続けたキーワードは「好評」である。
何故好評なのか、その理由を協会の人と話し合ってみた。

第１の理由は人間臭さではなかろうか。執筆依頼に際しては、組織よりも個人あくまで個人の活動を中心として書いて頂くようにお願いし、内容もほぼその通りのものとなった。
有名人のスキャンダルは極端な例ではあるが、人は個人的なことにより興味をもつ。
第２は、この特集が人名録、住所録的な機能をもつことである。執筆者について、写真と略歴として「文は人なり」といわゆる文章が掲載される。個人に関する情報としては相当価値の高いものになっていると思う。
第３は騒染み易さである。執筆をお願いした人々は舗装関係者ひいてはアスファルト誌の読者の間では高名な人が多い。テレビ番組でも新聞でもよく知っている人が登場すると興味を持ち熱心に見たり読んだりする。今回の一連の特集についても同様のことが云えるのではないか。

そのようなことで、好評であったと信じ、「民」特集が今まで以上に好評になるよう期待しているけれど、１つだけ気掛かりなことがある。

好評といっても、ランダムサンプリングなどを行ない客観的に調査した結果ではなく、風のたよりに類するものを関係者が聞き判断している程度のものである。情報源が読者全体を代表するものでなければ、特にそのソースが執筆者とその仲間達というようなことであれば、お手盈りの好評ということにもなりかねない。

今回の特集も学・官・民と続き、一応区切りのついた所である。
多数の読者の感想、意見を是非おききしたい。

（建設省土木研究所研究調整官）
アスファルトと付合って

はじめに

私が会社に入った頃の日本の道路事情は、今でもよく憶えている。それこそ、幹線道路を除けばあらゆる砂利道、あちこちに穴があり、雨が降れば泥んこ化する、そんな時代だった。

土木屋でもない私が何故道路会社に入ったのだろうか。と他人にも訙されるほどに奇妙に思われる面も確かに、そんな日本の道路が何時の日か、欧米の道路（写真などでしか見たことがなかった）のようにならべというロマンがあったのだろう。

あれから20年を経て、道路事情は見違えるようになっていた。周りに砂利道を見出すのが難しいほどだ。

入社当時、アスファルトとタールの区別もつかないままに、今日までずっと、概ねアスファルト材料を闘った。アスファルトはレオロジー研究の非常にいい材料だと本に書いてある。しばらく触っているとなるほどと思う。アスファルトは真に複雑で厄介な材料なのだ。そんな中での小生の経験から、思うことを少しばかり述べさせて頂く。

コンクリート舗装とアスファルト舗装のこと

セメントコンクリート舗装とアスファルト舗装とで一番違う点は何だろうか？論が結合材の役目が根本的に違うことだ。前者は化学反応で完全個体化し、骨材粒子を結合固定する。後者は、温度低下で固結したかに見えるが、実は熱可塑性というベールに隠れ、固結した骨材と一体化する訳では決していないのだ。

これが、アスファルト舗装をいろいろ複雑にしている。流動性を表す現象などはその最たるものだ、と気付いたのはおそらく経ったことである。夢かも知れないが、何かアスファルトを少しでもセメントに近づけられないかと思ったことだ。

アスファルトの改質のこと

今日、さまざまな改質アスファルトあるいは改質材がある。小生も、この面では経験を積み重ねてきたことを思い出す。ゴム系、樹脂系、コ-ポリマーカ系などの熱可塑性改質材、あるいは熱硬化性樹脂なども手掛けていた。だが、固結化という意味では、熱可塑性改質材の添加では限界があるようだ。熱硬化性系は今のところ施工的にコスト的にもう一歩の段階であろう。

セミブローン舗装にも一助されて調べたが、これも熱可塑の域を抜け出せていない。将来、効果のある改質法があるとすれば、アスファルト構成分子間の架橋、固定化の方向ではなかったかと思うのだが。

この一つの試みとして、ある時期、脱硫で余った硫黄をアスファルトにブレンドして使う機会があった。

硫黄がアスファルト構造内部に入り込み、一部は架橋作用、残りは凝縮点以下の固化で、一見セメントと同様な役目を期待したものの、環境汚染への懸念の問題から、研究が消えてしまったのが残念だった。

接枝と言うこと

改質の他に、アスファルト舗装にははく離という問題、即ち骨材との接枝と言う命題もあり、これも悩まされた。アスファルトと石は本当にくっつくのだろうか？ある時、常温下でボロボロを埋めただけに、数日も持たずに雨でパイナダーが流されてしまった経験がある。究極的には両者はくっつかないのだが、思わぬをえない。はく離防止剤の、消石灰だのをやってみても、両者の界面でどうも相容れないところがあるようだ。

Van der Waals\'分子間力だけのアスファルト舗装では、はく離から開放されないのか？結局、石との化学結合がなければ接着問題は解決しないのだろうか？

耐久性と資源

アスファルトには劣化という問題がある。最近、再生化が道を乗ってきたが、アスファルトの劣化をできるだけ遅延させることが舗装を長持ちさせ、かつそれだけ維持修理費の出費を先送りすることにつながることから、基本的な研究の一つではないだろうかと思う。

おわりに当って思っていることを一言。既設アスファルト舗装の表面から数センチには、アスファルトがストックされているとの見方ができ、これを資源と考えた場合、全国で数限りの量が埋蔵になっている。

したがって、単にリサイクリングだけを考えるのではなく、将来、この眠れる材料の別の方道も模索する必要があるのではないかと感じている昨今である。
私のアスファルト履歴

昨日、発刊されたばかりの転圧コンクリート舗装技術指針（案）に目を通していると、施工の細密な管理には、RI密度計を用いるという。懸かしいかぎりである。

昭和38年、建設省土木研究所化学研究室に就職した私は、RIの土木分野における利用に関する研究グループの一員として、RI密度計、水分計を用いた施工管理手法の研究を手伝いようになる。アスファルト量の測定法についても議論されており、技術的な意味でのアスファルトという言葉の出会いとなるが、アスファルトには興味がなかったことを記憶している。

その後、昭和45年退職された先輩の後を受けて、アスファルト混合物の配合設計法の検討を目的とした改良試験舗装のアスファルトの性状の経時変化に関する調査を命ぜられた。

アスファルトの実験室は黒く汚れた、溶剤の異臭が漂っている。RIの水利的な利用や水質の地球化学的な位置づけを担当していた私としては新鮮である。その上、一部手がつけられているものの施工直後から供用後に至るコアまでが山積されており、数で勝負するとなると苦手で戦意喪失である。

これを教訓とし、ASTM D-1856を読む、試験法の理解から始める。それから、既知サンプルを用いて実験の精度をチェックし、4、5ヶ月間アプリソースとアスファルトの物理試験に終始する。

これを機に、アスファルトにも興味をおぼえ、日刊工業出版の小冊子、金崎氏のアスファルトを読、石油学会誌等を読み漬けることになるのだが、当時印象に残った文献は三菱石油樹脂の阪島氏のアスファルトの組成と物性に関するものである。

昭和47年、緑があって現在の勤務先である大成道路㈱へ転職することになるのだが、舗装についてはズブの素人である。幸いなことに転職前半年程、舗装研究室にお世話になった折、土木研究所五年史の編纂のため、舗装関係の文献の整理をお手伝いしたこと、転職後も含めて、日本道路学会誌の道路舗装の一部の執筆を担当させていただいたことである。御隠し目学問であるが舗装の技術的な輪郭を窺げながら把握することができた。

目学問の私にとっては、舗装屋としての最初の仕事は、ある重機メーカーの構内舗装である。配合設計さえ誤れば、工事が終わる。大工である。回りは舗装屋と認めているようでもあり、教えても解釈もいかない。仕方なくアスファルト舗装要綱の付録にあるアスファルト混合物の骨材配合比を決定する作図を解めることは、3時間程だったであろうか、やっと理解して配合設計を終わらせたのかも知れない。特殊な混合物のためプランクトンをみるといわれる。また前へ急いで、山海堂の道路舗装講義、道路舗装の施工を頭に叩き込む。現在のアスファルトプランクトンとは雲泥の差、工事の時期だけでなく、1トンフォートプランクトンへと乗り込む、高齢のオペレータの方が一人開かれた。

オペレータの方に教えられるながらキャリブレーションを行い、混合物を出荷し、無事工事を終える。頭にドックチのヨチヨチ歩きの舗装屋の誕生である。

その後、アスファルト舗装技術のキーワードに係わる商品開発や発注図面からの委託調査試験、試験工事にたずさわることになる。

これからの業務を行っていると、時として好奇心や知的欲求から、よりアカデミックな研究となるのだが、時間的なことも社内企業の研究としてはずくわないなどの理由から私のブラックボックスに仕舞込むことになる。

ブラックボックスの中身の大学はアスファルトに関することで、何とか私が手で作れると思っているのだが、実験室内にすることさえも嫌われる年齢になってきたようである。言うそのものは意欲は充分で、私生活を支えてくれた黒いモニスターとの二人三脚ももう少し続けたいと考えている今日このごろである。
黒もの研究の歴史

昭和28年に入社し、研究所に配属されて最初に手がけたのは重油の研究であり、それが因縁となってか、その後もアスファルトなどのいわゆる黒ものを主に研究続けるようになった。当時は重油の需要が旺盛となり、重油の燃焼やそれに関連する一連の研究を行った。

アスファルトの研究に着手したのはこれらの仕事が一段落した昭和35年頃で、当時は既にアスファルトは主に中東産の原油から生産されていたが、使用上の多くの問題が起こっていた。アスファルトは原油の中の最も重質なもので、これを分析的に手がけることは大変なことであった。そこで、当時研究が進んでいたレオロジーから手をつけてアスファルト全体の特性を調べることにした。その山崎戸島太郎先生（現東大名誉教授）のレオロジー研究室に加わり、レオロジーの研究を続けた。アスファルトのレオロジー的性質はそのコロイド構造と関連し、コロイド構造はアスファルトの化学成分から構成されているので、次いで化学成分の研究も始めた。

アスファルトのように重質なものは多種類の複雑な化合物を個々に分析することは不可能で、まず化学的特性の似た成分に分離する組成分析を行なうこととした。特にコロイド構造との関連に重点をおいて、鈍和分、芳香族分、レジン、アスファルテンの4成分に分離する方法を検討した。現在の石油学会法はこれを更に改良したものである。さて、このようにしてアスファルトの成分構造とコロイド構造、レオロジー特性の関連を調べたが、その結果をもとに、他成分混合、溶剤分離、酸化、触媒酸化など適当な方法を組み合わせて成分組成を変え、いろいろな特性のアスファルトを製造した。舗装用の触媒セミプローンや防水工事用第4種の触媒プローンの製造もその頃であった。

なお、アスファルトの主用途は舗装用であり、アスファルト混合物の性状とアスファルトバインダーの関連についての研究は重要であり、これについては当初から北大の菅原照雄先生に長年にわたりご指導、ご協力いただき、多くの成果が得られ感謝している。

その後、機器分析が進歩し、組成分析で分離したアスファルトの各成分の平均化学構造を検討したが、中東産のアスファルトではそれ程大きな差異はないが、大阪のように中国アスファルトではかなり違いがあった。一般に原油は海成のものが多いが、中国原油は珍しく陸成原油である。大阪アスファルトや慶應平尾先生にお伴の新興のサラフィアスファルトについてみると、全般的に平均分子量が高めであるにもかかわらず比重は1以下であり、組成的にも重質成分のアスファルテンが極めて少なく、レジンが多かった。しかし構造解析を行ってみると、結合環系のナフテン環部分が芳香環部分より大きく、かつアルキル側鎖が多く、したがって分子容が大きいことがわかった。このため平均分子量が高めでも、nへプタンに対する溶解性が大きいのでアスファルテン量が少ないこと、また比重が小さいことが推測された。このような特異なアスファルトについて、化学構造の違いがその性質にどのよう影響するか更に検討するのも興味がある。

さて、アスファルトの研究は舗装用や防水工事用に重点をおいていたが、昭和42年頃に溶剤脱溶装置から副生するPDA、SDAアスファルトンの有効利用についても検討を始め、これらの化学組成、化学構造等を考慮して合成シリカナイト、炭素繊維、粒状活性炭、オゾン交換体、製鉄用コーティングなどの製造につれて研究を行った。その頃佐藤泰治先生（現東大名誉教授）の重質油研究会で勉強させていただいたことは楽しい思い出である。

長年にわたり黒ものを対象に研究を続けてきたが、中味がよくわからないだけに始めの頃は戸惑いが多かったが、研究が進むにつれて多くの面白さが見出される、次々と研究課題が出てきて非常に興味を覚えてきた。
「昔は音々」を口にすると何かがそこで停る事。転車操業の対策等から、今迄振り返る程の現況や年齢で無い事は承知している。時装の世界に飛び込んで25年が経ち、リフレッシュ休暇を迎えるようになった。
数倉通り新たな発して既往を整理し、これをベースに「さて」という処を記させて載く。

技術研究所に在籍し、工事の品質、施工、各種試験舗装の計画、調査、解析等に従事した。高度経済成長の時期にはほぼ在籍していた。各々が今この時代の要請を荷った課題という事にも恵まれ、各種各様の舗装の材料、構造、施工、評価等のテーマに係わった、各々に十分対応しなければ、その都度、俄か勉強で切り抜けてみたいように思う。その拠点に基礎知識や実験も含め補充し、これぞを自分なりに鍛えてきたのが、スタートの年10年であった。舗装の基本のあれこれに真面目に取り組んだ強烈な時代で、「舗装とは」何か解ったような時期にもなっていると想い出す。

それからは色気とアリガトガシの出し、材料（水銀、砂の硬さ）路盤（耐水性）、アスコン（締め固め難易度、半たわみ性）、コンクリート（養生効果、摩耗特性）、構造（簡易法、最適設計）、評価（環境外力、破壊時のTNO等）プラクティカルな面から舗装の特性把握に取り組んだ。考えたのは、実態を説明する評価手法や現象の相関を説明する指標値の意味と限界、そして検討等が中心で、解らないことが少しまで将れば、それが獅子となってしまって興味を旺盛にして取り組めた次の約10年の時期であったと覚えている。振り返ると一歩突っ込んだ基本の欠如を衝撃的に取れば研究とならなかった全てと総括している。この間、数回の海外出張で特殊材料、工法等の調査や課題解決や適用の各種委員会に参加させて戴いた。

その後、研究開発部門の人材育成と確保の観点から、既往の理解に追いかれる変でなく、全体システムで把えた場合の要因事項や既往の活用策を掲出し出す取り組みから、最近の新工法等で話題の多いPerviousアスコン、RCCP、Composite等に訪れました。また、技術力発揮し得る信頼性設計を舗装にも考え、舗装評価の在り方法から入り、FWDとその逆解析に最適化手法の活用による舗装診断を、舗装構造モデルと現行設計法との対応に室内レザリエントモデュラの適用等を行なった。併せて別の最適化手法によるPMMSの検討もスタートした。研究体制の充実と講義担当の大学の協力もあって取組むことが出来た。また、各々の結果を踏まえての試験工事への移行も出来た時にもあり、実際業務に活かし得た事で信しかったものの、以降の展開は、個々問題を巻き込む事にもなった。種々の改良検討を経てほぼ定着の現状に、種々の感情がない様に従って今やももっとも何している心境です。

ここ数年は研究所を離れ、既往分も含めた技術開発の集積の活用に取り組みながら既往のコンサルタント的な動きに変わってきている。会社全体で作りあげてきた技術力がそれをよりの受益をとらない個を感じない様、提案技術の是非やその制約を討議する方向を模索し、これに必要な連携体制や関連事項の習得をと研究している。

たとえ舗装、それでも舗装を、舗装があって初めて道路等の機能が満たされ、その管理における評価には多様化、高度化と併せ信頼性の導入があらゆる考え方を持ってある。例えば舗装をどうレビューして来るか、どう制作するかを、一人一人の提案を検討するため、これが厳しさを増している現業へ活用される方向を、また、3Kの産業構造解消が迫られえたと……と考えている。

個々的な思い畠から考えると、これがレビューを迎え「さて」という処に繰り返すでしょう。

入社した時に聞き、歌った「一つとせ、人も知ってる日本舗装の………のつらさも知らないで、入社してくる馬鹿もいる」の数え歌ものも昔、一寸僅かでも、又、よくこまかっただろと思い、それは何かし、歌詞にある「○○の一つ覚え」の答え以外に多々あった事を拾い出し昨、ジャンプを経てスケッチ・パイ・ステップ

Vol. 33 No. 166 (1991年)
私のアスファルト30年

井 町 弘 光

いまま ひろみつ
JSRシェルエラストマー㈱
研究開発部長。昭和56年東
京都立大学工学部土木工学
学科、
勤務先：〒314-02 英和県筑
島郡柳緑町東和田34。
0299-96-6881

私のアスファルトとの出会いは、シェル石油に入社し
た昭和36年に始まったが、当時東京丸の内の一角に立
ち並んでいた古風な赤煉瓦造りの建物の地下に、小さ
な試験室があった。試験室と言おうより居間と言った感
じで、ガスここにかけた鍋でアスファルトを溶かし
たり、骨材と混ぜたりと、さながら調理人であった。
当時の主な仕事は、ユーザーズさんに自社のアスファルト
を正しく使用していただくため品質について理解を
得ることで、必要なデータを準備しながら工事事務所
やプラントを訪問することが多かった。と言えば、
昭和36年発行の舗装要覧などで、アスファルト採取原油の
多様化や、製造方法の違いによるアスファルトの性質
の差を理解しやすいうち、低温伸度でA、B、Cの3
種類に分類されていたが、この分類が品質の優劣を表
すものと受け取られているケースも多かったためであ
る。当時の舗装用アスファルトの使用量は現在の1／
10程度で、何度の舗装に自社のアスファルトが使われ
たか明確だったのに、施工後数ヶ月あるいは数年後、
近くを車で通った時など車を止めると、路面の状況を観
察し自分分の品質に関する考え方が妥当であったり
に安堵したことである。現在はアスファルトの使用
量が増えプラントで複数メーカーのアスファルトが使
われ、あるいは合材として販売されるため、何れに自
社のアスファルトが使われているかは必ずしも明確で
なく、従って舗装材料メーカーとしてアスファルトの
品質管理の面では十分配慮して、「道路舗装」と言う
最終製品にたいする関心が薄らいているのは残念であ
る。

この試験室もその後横浜に移転したが、横浜時代の
失敗に試験機器鉄生事件がある。事件と言うには大
げさであるが、新しく試験機がある日、鉄だれに
なっているのに気付き、最初は試験室が横浜港の近く
にあるため、潮風の影響かと考えたが、当時骨材取扱
の遠心分離脱水器の溶剤に一般に四塩化炭素を使用し
ており、その取扱不従によるものかと思い当たり、慌て
て対策を講じた。その数ヶ月後に四塩化炭素の有害性
が新聞で報じられたが、誠に警鐘で早めの対応が
できたのは幸いであった。現在どここの職場でも安全衛
生に対する意識の向上、対策を行っているが、溶剤の
安全性については、年々評価が厳しくなっており、そ
の取扱に当たっては十分な配慮が必要である。

その後、多少なりとも研究的な仕事に着手したのは、
昭和43年に中央研究所が設立されてからで、舗装関係
では有機入度指数の改良アスファルトへの取り組みが
続いた。

最近話題の地球温暖化現象と関係があるかどうか判
らないが、今個の夏も異常高温が続き、交通渋滞箇所
のアスファルト舗装のわだち屋が目立ったが、日本
アスファルト協会で昭和52年建設省より研究委託を受
けて発足した、『重点道路の舗装用アスファルトの研
究』は舗装の耐流動性という面からはあるが、アス
ファルト品質と舗装の実用性能の関係を明らかにし、
数多くの試験舗装と追跡調査で実証できたことは意義
深く、私も検討委員会のメンバーとして大変勉強になっ
た。特にアスファルトメーカーとしての立場からも、
品質への取り組みの重要性を再認識する機会となった。
改良アスファルトの品質については、原油料の選択、
配合、製造条件、製品貯蔵および運送等のメーカーサ
イドの問題だけでなく、プラントでの貯蔵、混和およ
び施工管理等ユーザーサイドと一体となった品質管理
が要求される。

現在は、熱可塑性ゴム（SBS、SIS）の製造会社で研
究開発を担当しているが、舗装用改質アスファルトへ
の熱可塑性ゴムの利用も年々増加している。しかし、
アスファルトへの溶解性、相溶性、貯蔵安定性等検討
課題も多い、今までの既存のポリマーをアスファルト
に利用すると言う受け身の立場から、アスファルトを
主体を置いたグレード開発の検討を進めている。今後
も舗装分野に従事する、多少でも貢献できればと願
っております。
出逢いの第一歩

那須の沼原湿原に在る天端標高1240mの巨大な水瓶——沼原調整池——今夏こそを訪れ、水際に出歩んだ。深い雪と間断無く続く小川の音の舞台では、時の観念は頭から消えてゆく。急いにして、強者共と一緒

に汗を流し、喜び、飲んで誰だかの当時へと戻ってゆく。

勾配1：2.5、最大長180mの斜面に転み、恐る恐る

踏み出した「舖装」への第一歩は、我々「アスファルトフェイシング」との出会いでもあった。

卒業研究で見抜かれた「膨張コンクリート舗装」の論文に憧れての入社。それが、初恋の様に淡くはなく

消えた処から私の「舗装」は始まった。

アスファルトフィービングしながらだったホットエレベータからの骨材揃出し、賭けて覚えた温度・粒度管理、腰まで懸けられたボッシュハンマーによるニーディング仕上げ、何度も駆昇り駆下りした斜面、AP 2版から AF 8版への

合併改訂、針の穴も詰まれていないクリスタラジコン処理、夜明けと共に開始した真空断熱試験、バランスを取りながらのスクリューやによるマスチック塗布等、無我夢中ではあったが、「舗装屋」の基本を叩き込まれ

た、そして想い出の多いアスファルトフェイシング工士であった。

その後

リーンコンクリートによるサンドイッチ工法の建設省工事などを経て、昭和48年秋から技術研究所勤務と

なった。そこで、土質安定処理などの他、新設社に先駆けた湿式透析半島（たわみ）性舗装の開発に情熱を

懸けた。空隙の倍と量を考慮した母体アスコンの配

合、手作り試験器具を交えて、調度、ブリージング、

凝結時間、強度、耐久性などを確認したセメントミル

ク試験、そして複合舗装材としての載荷応答試験、最

適なものを求め技研治りとなった事もあった。そして

昭和50年、秋月のもとでの試験舗装に落着けた。

再び

昭和51年、本店技術部へ転勤となり、アスファルト

フェイシングなどの水工アスファルトにも再び拘わるようになった。

以来、設計・施工計画・積算・配合設計・施工・技術指導・維持管理……手掛けたダム・調整池の数は両

手の指より多くなった。10年以上も付き合いがダム

も多い。

アスファルトフェイシングの場合、老化防止等を目

的として、機械的特性にアスファルトマスチック等

による薄化を施す。時代の流れで、化粧材もカル

ラブルな新しいものが現われたが、やはり化粧の乗りか

ても黑には黒が似合うようである。その黒に、この頃

引潮を以前に、小じさ、赤さあるいは色褪せが見ら

れることがある。強し施工のせいかカなりとは言えない

ような気もする。材質の確認も更に続けたい。

毎年、追跡調査に出掛ける。老けていないか、どこ

か傷でも付いていないか……。その表情から、施工時

そしてそれ以降の試験が問われる。

いつまでも、美しく丈夫でいるように、最近では新

しい化粧材、形態・整髪化則などのフィルムケー

ルでの研究・検証にも多くを費やしている。

そして今

これまで遙か遠いの多かった白い恋人に、数年前に再

会した。幾分、容姿は異なっていたが……。圧延コン

クリート舗装（RCCP）である。

配合設計、施工法、FWDや載荷試験による構造評価

の他、最近は、ひびわれコントロール、CTBやアスコ

ンとドッキング（コンポジット舗装）などの検討も

進めている。頑丈な腕白坊主を育てるように……。

私の「舗装」は、白と黒の狭間で、多くの方々に導

かれ支えられて在る。心から有難く思っている。
舗装 過歴 雑感

北村 幸治

公務員のとき、コンクリート橋、マスコンクリート、コンクリート舗装、アスファルト舗装の耐摩耗性舗装、軟弱地盤・セメント安定処理・滑り止め舗装、グースアスファルトなど。会社員となって、斜面舗装の不透水性アスコン・透水性アスコン、高速道路の舗装、空港舗装、特殊舗装などに合った。

当時の土木試験所の代行試験長、桂沢ダムの堂垣内尚弘氏、札幌開発建設部の高橋敏五郎部長、開発局本局の上戸健司部長等々、上司、同僚に恵まれ、勝手なことを自由にやらせて戴いた役人の生活の20年であった。北海道大学の板倉忠三教授、菅原隆雄教授からも数々の御教示を戴いた。業者の現場経験者から多くのお知見を教わった。

会社では当時の工藤忠夫専務、佐藤正八常務などの権威者に恵まれ、土木研究所の松野三郎氏、南雲貞氏、飯島高氏などからもいろいろと御指導を戴いた。シェル石油の太田記夫氏、牛尾俊介氏などにも何かと御援助を仰いだ22年であった。

何と数々の良い先輩、上司、同僚に恵まれたことであったか。この威利に深く感謝申し上げている次第である。

試験所で研究研究のを携わっていると、考え方がどうしようも観念的になっている。現場に出て初めて物事の本質が見え、まるっきり疑問も湧いてきた。

ボリビアでコンクリート舗装の路盤として砂のセメント安定処理を行なった。収縮クラックについて現地コンサルタントからクレームがついた。しかし日本の資料からはそれを理論的で説明するものを見付けられず、やっと欧州の本からそれを見出すことができた。

常識化していることであっても、明確にそれを説明できる基礎的なものは、きっちりと解明して置く地道な研究も欲しいものだと思う。

コンクリートは硬化収縮し、温度、湿度によっても膨張収縮する。コンクリート舗装の目地は生き物の性に挙動し、膨張目地は縮小し収縮目地は開いて行く。ビルビル空港のコンクリート舗装に於で、まことにその実態を見せつけられた。

日本の瀬野～軽井沢間の道路工事でアスファルト舗装の収縮クラックの発生を目の当たりにすることができた。アスファルト舗装も低温下においては弾性的に挙動する。しかしアスファルト混合物の熱的な物性値について、私にとっては漠然と残念である。

コンクリート、アスファルトなど何れにしても、荷重を支える構造物としては、弾性的に取扱わざるを得ないであろうと思っている。

少し温度などの環境条件の面から舗装構造の実態を把握してみたいものと考えている。

今日我が国の建設業者に要請されていることは、総ての作業のロボット化、省力化である。如何に力のさく凝蒸を講じ得るかが企業の運命を分かることである。構築物は主目的さえ達成できればその効用は十分であるはずであるが、そのロボット化、省力化による仕上に優れに対応して、発注者・受注者の相互理解がなければならない。職人芸を求める時代は遠くなり、誰れも主目的と諦れるものと仕事をして、成果品の判断にについて考え直さなければならない時代になっていますのよい

天氣資源である降水の徹底利用は、それを河口等へ直接流入させずに上流域に遊水させる治水の研究開発と、流出係数を上げているが表面渇水性促進対策である。従来は水田が遊水池の効能を発揮していた。しかし近年の著者都市化に伴う構築物の増加は、流出係数を著しく上げて下水道施設の容量増大を招いている。少なくとも交通用ではない舗装面の透水化促進開発は早急に進めることではないか。

たて前を言うのは容易である。通るもいい。しかし口舌の徒々にこれをはい。無名を言うことは難かしい。いろいろと報告に適当があるからである。

特に根回し社会の日本では村八分になりかねない。しかし歯力を過ぎたら少しは勝手なこともいってみた。いやがらせの年齢である。
アスファルトとの出会いか
舗装の研究へ

久下晴巳

1．アスファルトとの出会い

私とアスファルトとの出会いは小学校6年生の時であった。自宅から私の通っていた小学校へ行くには国道を1本横断しなければならなかった。その国道の舗装は夏場になるとフラッシュして、あたかも、とりもの上を歩くような具合で、すこぶる歩き難かった。

その理由は父親に聞くと、その舗装はタルールというものが作られているとのことであった。これが私とアスファルトとの最初の出会いといえる。

また、その当時より、私の将来の夢はエンジニアになることであったが、これは、私の父親が国鉄の橋梁技術者であったことにも因って試していると思われる。

2．振動土圧の研究

エンジニアになりたいという夢は消えることなく、将来の進路を決める時に、エンジニアにすべきか医者にすべきか悩んだ時期はあったが、大学では土木工学を専攻した。工学の中でも土木を専攻したのは、やはり父親の影響であったと思う。

卒業研究は、防災研究所の柴田徹先生が私と同期であった縁で、先生の研究室で、地震時に橋梁に作用する振動土圧の研究をすることになった。出来栄えには自信はないが、正味5ヶ月間真剣に取り組んだのはいい思い出になった。

3．舗装の研究

就職は、道路会社を選んだ。これは、将来何をやるかを考えた時に、白いカンパスに線を描くように、道のない所に道を造りたいと思ったからであった。ただ、当時私は道路の線形の設計も道路会社がやるものと思っていたのだから、大分認識が誤っていた。そして私は道路会社に入社し、技術研究所に配属された。

その後、私は一時期転勤することはあるが、ほとんど技術研究所で研究業務を行ってきた。私が携ってきた主要業務内容を列挙すると次のとおりである。

(1) 海外主要国の舗装構造設計法に関する調査研究
(2) 鋼纖維補強コンクリートに関する調査研究
(3) 特殊粉体材料の成形法に関する研究
(4) 舗装の補修材料に関する研究

私が研究所に配属されて最初に担当したテーマは、海外主要国の中舗装構造設計法に関する調査研究であり、私の初仕事はゴルフのうちでもアメリカの4機関（AASHTO、AI、その他）とイギリスの設計法を英文和訳することであった。舗装の「は」の字を知らない身で外国の文献を読むのはかなりしんどい作業であったが、海外主な国の中で日本の設計法がどのような位置付けにあるかを知れたのそれは、その後の私の研究活動の上でも大きな意味があった。

その後私はいくつかの研究テーマを担当し、上記の(2)と(4)のテーマでは何回かの現場施工も経験したが、主に基礎研究を行ってきた。

これらの業務以外に、数年前より、道路協会、アスファルト協会、土質工学会等のいくつかの新設委員会に参加させてもらており、特に土質工学会の「土と基礎」編集委員会では、土の専門家が書いた文章を舗装に携わっている者が論説するということで非常に労苦したが今になっては思い出す。

4．国際化、高齢化の時代に向けて

私は現在、アスファルト協会の技術研究グループに参加し、官学問の若者研究者とアスファルト舗装について勉強させてもらっている。この事は、単に、勉強できるということだけでなく、色々な立場の人々と友達になった。また、官学問の研究者が抱えている問題点についてディスカッションできるという意味で、私に取って非常に有難い存在である。ただ、今後は日本の限らず世界の研究者との交流がさらに必要になるものと思われ、媒体としての言葉の勉強は今後共必要であると考えている。

また、私もはほぼ人生の折り返し点に立ち、今後の高齢化社会の時代に向けて、高齢者や生活弱者が歩き易く、また歩くことによって活力を得られるような道づくりを行いしたいと思う今日の頃である。

Vol. 33 No. 166 (1991年) 9
1955年、大学の機械工学科を卒業すると同時に、舗装工事会社へ入社し、当時、日本に3台しかないというパーサーグリーン社製アスファルトフィニッシャを運転する機会を与えられ、その後同機と5年間活動を共にしましたが、現場で機械を運転しながら、舗装を作る工程と、製造業が生産ラインを構成し物を作る工程の考え方にある操作があがりありました。それら、製造業の場合、先に市場が要求する製品があってそれを作るための生産技術を開発するのが一般的であるのに対し、舗装の場合、先に施工方法（機械）があって、それに合わせて材料がえられれば、舗装の性能及び品質が決まり、所調の舗装を作るための生産技術（手段）の開発を、あまり重視していないように見受けられたということです。例を上げると、石炭の精製、石炭の大きいアスファルトフィニッシャを敷きならし、同時に転圧するワークを呼ばれる技術を経験しました。重交通に適した舗装であると思われ、施工技術を勉強する必要があると考えている間に、施工能力が小さく数が少ないという欠点が改善されないまま姿を消し去ってしまいました。舗装のわだち擁れが大きな問題となっている今日、あの工法の施工技術が改善され、あの舗装構造が活用されていたら、わだち擁れ対策に役立っているのではないかと、当時を知る者として残念に思うと同時に、やはり先に品質があって、それに合った生産技術が確立されることにより技術の進歩があることを痛感しています。

1963年、米国で、アスファルト舗装の施工技術の研修を受ける機会を与えられ、アイオワ州西部のスティーズ市に近い舗装工事現場で、アスファルトフィニッシャの使い方を勉強していたときのこと、舗装の経験30年という技術者からのような話を聞きしました。「前は舗装機械の勉強をしているそうだが、日本へ帰ったら、Warrenite Bitulithicというワーレン社の特許工法を施工するに適したペーバを開発しなさい。この工法は、できるだけ大きい粒径の粗骨材を多量に使用し、粗骨材間の空隙を最少するべく程度のアスファルトモルタルを加えるもので、大変施工がむずかしい。しかし、これからの道路は荷重がどんどん大きくなるので、この舗装はますます重要になる。」とのこと。この舗装構造と施工機械の開発に大変魅力を感じたので、帰国後、上司に新しいペーバを開発を検討したいと相談すると、それは、馬車の軽輪に適した舗装であってすでに過去のものである。ゴムタイヤの時代になった今、平たんで乗り心地のよい舗装を作るために、アスファルトフィニッシャで施工しやすい混合物をえらぶ傾向にあるので、路面の平たんな性の向上に重点をおいて舗装機械の改良、開発を実施しなければならないとのこと、そのときは、そんなものかなと思いつつ何か心のすみにひっかかるものがありました。現在タイヤの接地面圧が10kg/cm²をこえるであろうという状況下にあって、バイナダーの改質など多種多様なガス、大粒径の舗装も見のがすことができないものであるとすれば、当時の助言にしたがっておれば、重交通に対処する舗装の開発に役立っているのではないか、生産手段、施工機械の開発の重要を再認識している次第です。

1990年、舗装の高度化と人手不足に対応するため、建設省が中心となり、官民が協力し、舗装の自動化技術の開発が推進されるなど、舗装の技術は新しい展開が見られ、技術開発、新技術の導入が活発に行われています。

今後の研究は、改質されたアスファルトを活用しようとすれば施工法、機械の改良が常に必要になるなどの例に見られるように、舗装の高度化は、生産技術と機械化施工の高度化があって実現するものであるところから、これからの道路に必要な構造を有する舗装を作るための、生産技術の改善を重視しつつ方向を決めざるを得ないと思われ、その実現のために、機械、材料等の技術者の活躍とともに、必要な資金や労力が投入されることを大いに期待し、前述の例に見られるような、よい工法があっても適切な施工手段がないために普及しない、という事態が発生しないよう、施工機械、施工技術の改良、開発に努力したいと思います。
振り向けばそこに……

学生時代のことである。そこは、実習先のある研究所である。庭には、5 m^2程度の広さの池があり、鶴が数十匹泳いでいた。どうも池の色が、今まで見慣れたものと異なり、黒々としている。なんだろうと思って近寄り、池の脇を触ってみると軟らかい。エッ！これか、道路に舗装されているものと同じものなのか。どうして、水を貯めることができるのはだろうか。どうせば、このようなものが出来るのだろうか。など不思議に思っていた。

道路会社に就職し、技術研究所に配属されアスファルトともに生活することになった。

アスファルトは暖かくすると軟らかくなり、更に熱すると水のようになり、骨材と混ぜ易くなる。アスファルトと骨材を混合したものは、温度の高いうちに締め固められると、優れた材料になる。その材料は、骨材の種類と配合、及びアスファルトの種類と含有量を変化させる事によって、目的に応じた混合物になる。例えば、水の浸透を防ぐための透水用混合物として利用したり、表面の水を排除するために透水性混合物として利用したりしている。と言うことを、数年かけて学んだ。

やがて一つのテーマを与えられた。アスファルトの改質である。当時は、高度成長期であり急速な交通量の増加、車両の大型化など道路を取り巻く環境は、過酷になっていた。このため、主に都市内道路の交差点付近を中心としたアスファルト舗装が、流動による水だまり掘れを目立たなくなっていた。この対策として、アスファルト混合物の粒度、骨材の最大粒径、アスファルト量など各条件が考えられるが、アスファルトの粘性抵抗を改質することと、その改質を容易に、かつ簡便にする方法を検討する事にした。

その結果、アスファルトプラントのミキサー内に直接投入し、アスファルトを改質し混合物が製造できる粉末状の樹脂を添加するに至った。それは、骨材の表面にアスファルトが被覆された後、混合温度で溶融する樹脂を添加し、混合中に分散させ、その面積に偏在付着させて改質する方法である。現在、耐流動性用に用いている他、各種アスファルト混合物の改質材としても利用されている。

アスファルトにどうかしと浸かし、舗装に関する調査研究や常温施工用混合物等の材料開発に真剣に務めている頃、一寸先へ出て遊んでこいと上司から言われた。

それが、アスファルト舗装技術研究グループであった。月2回の勉強会は大変でつづく、懸渇ところへ出て来たものだと、思っていたが、HRR, TRR, AAPTの中から、クラックとわだち掘れに関する論文を勉強したのが初期の頃である。以後、アスファルト舗装の構造設計に関する国際会議の論文など、舗装の設計法や維持管理システムなど、外国文献を中心に検討した事は、非常に勉強になった。ものの見方を変えたのである。視野も広がったような気がする。これらは、阿部先生をはじめグループの方々のおかげと感謝している。

一方、本業の他では、アスファルト舗装とその混合物の再生に取り組んでいた。再生における問題点の一つは、アスファルトの老化ではないかと思う。老化は加熱によって生じるのは勿論のこと、日光や風雨等の気象条件により、更に促進される。しかも、それは空げき化など混合物の性状の他、舗装された箇所の供用条件によっても異なってくる。道路の端部では老化の進行が著しいが、車両走行位置では、それ程進まない。このような事を、いかに均一に回復させ、いかに再生させるか一つのポイントであろう。施工機械や添加材料などからの検討も必要と思うが、老化防止の方向からの研究も重要ではないかと思。水の中に埋没したアースダム等の表面に舗装された箇所は、老化がほとんど進まなかったという例もある。

アスファルト舗装技術研究グループにおける10年間の歩みを終え、早2年が過ぎ去ろうとしている。騒染みのアスファルトとの生活から離れ、今は工事部門の立場から、舗装技術を見直している。
特別集：舗装技術に関する雑感・民間における舗装の研究活動

舗装との係わり、人と出会い

小島 逸平

井谷道路舗装技術研究所 第一研究部長 業審・昭和41年 東京理科大学理学部2期化学科卒

電話先：〒300-24 茨城県筑波郡谷和原村南76-1
☎0297-52-4751

語り1；

高専（化学）を出て最初の就職先が建設省土木研究所化学研究室であります。研究室の名前が示す通り、「土木の中の化学」を探ることが業務の中にあったように記憶しています。

先ず目された仕事は「ダム用セメントに関する研究」であり、水和熱が小さい高圧水セメントをダム用セメントとして利用するために、セメントそのものの品質の安定化を図ることでありました。次いで、土の化学的安定化に関する研究があり、石灰一石こう系の組成の安定化の研究が行なわれ、試験結果の検討を行いました。

さらに、舗装への係わりのきっかけとなる「試験道路によるアスファルトの性状変化に関する研究」では、便携試験舗装に使用されるアスファルトの組成変化の検討を行い、劣化の検討を行いました。

この5年間は就職時代であり、坂上信次、近藤紀雄、大場正男の各課長さんのご指導が印象に残ります。

語り2；

昭和44年に舗装研究室に配置換えとなり、私の卒業時代が始まるにあたります。

最初のテーマは「舗装道路における試験調査」ということで、上層舗装工法に関する実験舗装の施工時からの調査でした。CBR試験、平板荷重試験、ベッケルマンビームによるたわみ測定、圧縮、沈下計やひずみゲージによる測定など、膨大なデータに開まれました。しかしこの試験舗装が翌年実施された下層舗装工法に関する検討舗装舗装と合わせて、我が国における舗装工法による等温換算係数の推定に関する有用な試験舗装となった事を考えると貴重な経験でした。

さらに舗装舗装に関する試験調査として、新材

新工法による舗装の薄層化のための材料選定や実験舗装の調査を行い、その基礎的なデータをもとに、日本道路協会で発足した「本四連絡橋舗装特設研究会」との共同研究、中でも鋼板舗装を一体化させた供試体による疲労試験は、橋面舗装の局部変形の影響を示すスケートになったと考えております。

また、アスファルト舗装のほうでは陸法対策の研究の一環として室内試験方法としてバスホイールトラッキング試験をまとめていたことも時代の経験であります。試験舗装や試験条件を変化させて実験中に、現場と同じようなばらばらな現象を再現できた時は大きな感動を覚えたものであります。

ここでは、松野浩男所属、南雲貞雄主査研究員、河野宏研究員、建設省の各地方建設局および交通局関係の諸氏から「理論と経験」を教わりました。

語り3；

昭和53年から土木研究所がつくばに移り、私の茨城時代が始まります。

ここでは、アスファルト舗装の摩耗量の予測式の検討、建設役務物の有効利用に関する研究の一環として、ライクリング舗装工法の検討等にあたりきり再生の限界のようなものを探っていました。

また、東京高速道路舗装用アスファルトAC－100の開発研究は「ポアズ」に熱中しました。

この「つくば」時代は、南雲実室長、飯島尚室長、藤田実室長、多田宏行委員長等にご指導いただきました。

語り4；

昭和59年からは会社員です。民間の研究所、特に新たに設立された所では、研究的な事より先ず人選がスタートの仕事でありました。少し早急にはありますが、研究員が育ち、新工法、新技術（名付けてKM〇〇工法）を探ることに努力しております。もちろん、南雲と一緒にです。
特集：舗装技術に関する雑感・民間における舗装の研究活動
小林 耕平

1. 始めて舗装を見た
子供の頃、近所の公園で遊び、当時はまだ周囲は畑と雑木林が多く家の前は砂利道で、道路は子供達にとって楽しい遊び場であった。この道がある日舗装され、滑りやすいのを避け、ローラーが締め、タイルが散ばれた。今となっては懐かしい「失敗対策事業」であるが舗装の作業は、これが舗装との係わりであった。その後車が多くなり子供は遊べる広場を失ったりように思われる。

2. 会社へ入ったときの風
約15年近く舗装とのブランクにいることがあれば、始めて配布されたのは中央研究所（試験室当時の社長は住んでいた）であった。何しろアスファルト製造販売の会社なので、その汚いこと床から汗かき天井まで黒いアスファルトが飛び散っていた、まず先輩には「壁や机に寄り掛かれない」「手をつくな」と言われた。体が汚れるのを防ぐ為の温かい内装であった。実験室での経験が深いか浅いかは作業服の汚れを見れば一目瞭然であった。勿論新人は要領が悪く汚れるからである。ここで与えられたテーマは「APPの利用」であった。APPとはアスタチックポリプロピレンなる名前の、ポリプロ（PP）の副産物である。これがPPの増産と供に大量に発生した。ただ廃棄するにはもったいないと言うので道路への利用が考えられたのである。APPは当初アスファルトに混ぜれば軟化点が上昇し改質効果が高く、原料は安くて簡単に取れるのであっただが実際に実験すると、Asに溶けず、除着性は劣る、収縮する等と欠点が多く、改質アスファルトへの利用は断念した。APPは白色（多少は黄色い）であることにとって、着目しカラー舗装という発案で某大手化学会社の構内に試験舗装を行ったが、やはり収縮が出てAPPの利用は結局断念せざるをえず、まことに残念であった。

3. 今舗装に思うこと
CBRから構造設計から表面処理工事が、材料開発などを含みつつにアスファルト舗装に深く関わってしまったが、この頃ののようなことを感じている。
一つは新しい材料を開発した時に一瞬のことがその後の評価に時間がかかって過ぎることである。実験室でマーシャルとかホールドで混合物の性状は他と比較しても、実際の耐久性は試験舗装を行って侭用性をみなければならない為である。欧米の例でも結局試験舗装を行って耐久性を見てから実用化しているよう世界的な傾向として仕方がないであろうか。

二つ目は舗装に対するニーズの変化である。世の中が豊かになり「ゆとり」「うるおい」を求めようになり、より地球環境保護が叫ばれている。人間エゴからエコロジーへの変化である。そして機能性舗装として人に、車に、自然に優しい水を透す舗装が登場した。舗装にニューワールドが起こるのか、今後い関心である。

4. 未来の舗装
夢の中で未来の東京を眺めている。メガロポリス東京、1000mにも及ぶ超厚高層ビルが緑と水の自然の中、効果的に配置されている。そして道路は幾何学的模様を作ってビル（一つの都市）を結んでいる。未来的車はどんなものか近づいて良見した。運転席と思しきものは無く流石に進んでいる。更に下を見たらなんとタイヤが無い。そして、未来の舗装となることか？

Vol. 33 No. 166 (1991年)
私が、アスファルトと係わり合いを持つようになったのは、昭和37年春、SBRラテックスの用途開発を命ぜられた。その一部の仕事として、土木建築用を目的としたSBRラテックスによるセメントモルタルの改質、及びアスファルトの改質であった。昭和38年には、セメント用SBRラテックスを使う事事が出来、一部は半剛性舗装用となった。アスファルト改質用は、プレミックスを対象に既存なら使用される様になり、これが、私のアスファルトとの出会いであった。その頃、名神高速道路建設の見学があり、町中の舗装工事しか見た事の無かった私には、大型機械が縦横に走り廻る光景に、只々、驚くばかりであった。

その後、昭和42年新しい実験棟を完成した北海道大学工学部筑紫研究室へ、道路材料の研究に派遣され、本格的な道路との付き合いが始まった。ここでの生活は、道路工事が、私のそれ還暦した世界と余りにも違う領域で、且つこれに用いられる材料が、学問的には化学と舗装工学とか相接する領域の中で、大きな役割を演している事から、私の眼に非常に新鮮に映った。この時、一緒に仕事をした人達の多くは、現在第一線で活躍しておられる。

昭和43年、IISRP（国際合成ゴム産生者協会）より研究資金の供与を受け、高橋一郎氏を委員長として、建設省、日本道路公団、大学、舗装業界及び学識経験者等の多数の方々の参加を得て、ゴムアスファルト研究会が発足し、ここでの成果が、現在のゴムアスファルトの技術的基盤となり、現在に至っている。

昨来、約1/4世紀を経た現在、深い関わり合いを持った舗装材料の開発を振り返って見ると、改質アスファルト、半剛性舗装、更にカラーアスファルト、樹脂舗装そして最近では、排水性舗装等が順次登場し市販される様になった。しかし、材料的にも大きな変化は認められない現状である。又、施工の分野では、加熱混合、敷均し、振圧等、プロセスとしては、部分的に機械化に至る自動化されているものの、舗装のシステムとして見ると、基本的に大きな変革は認められない。

この様な状況は、その根本的理由としては、舗装業界が公共投資をベースとした、現行基準枠内での仕事であるため、他の業界の様には世界の景気動向及び技術革新に直接左右される事の少ない、極めて穏やかな雰囲気に育まれた環境にあるからと言える。

道路材料の開発で問題となるのは、その評価、即ち室内試験、試験施工、追跡調査等に時間が掛かる事で、少なくとも5年以上の時間が必要とする。現在の様に、世界中の動きが、その日の内に我々の耳に、耳に届いてしまえば、時代ともなると、評価が終わっていき使われるという時には、時代遅れの材料となっているよう。

私の育った時代は、10年が一つの節目であったが、今は2～3年で一サイクルの世の中もまた々としている。となると、従来から行われていた評価方法によるのではなく、新しい見方に立って時間的要素と現場との対応する事が必要である。

私の生活面では、衛星放送により世界の情報が最短距離で届く時代と゠となった。それが、私達の判断を速やかにと、世界の進歩に乗り越える。

かつて、道路は平坦で且つ安全に速やかに車両が通行出来ることを目標にしてきた。そのため、私達は一生涯懸命、わだちばれ、すりへり等を起こさない材料を求め続けてきた。しかし、最近では、これに加えて、排水性舗装の出現により、私達の材料、施工方法を含めた開発度アスコンに対する従来の概念は一掃された。舗装の分野でも、少しずつ変わって来ている事を示しているが、もう少し材料に対する判断を速めないと世の中の動きとはギャップがあらゆるのではないか。

つまり考えると、アスファルト舗装こそ材料の要素（化学的組成や物性）に支配されているものではない。

アスファルトは、人間の歴史に長く係わり合いを持ち、その性質は、他の材料に認められない柔軟な、変形特性を持っている。限られた資源を大切に使うためにも、その特性をより改善して使用することは、我々人類に課せられた大きな研究課題であると信じている。

今年も、飛躍の年となる様願う。
私とアスファルト

はじめに

私が初めてアスファルトに出会ったのは、会社に入社した昭和37年の6月、新入社員教育が終わって研究部（当時）に配属された時です。それから、早いもので29年が過ぎようとしている。最近は彼らのことをよく思い出せないが、この頃のことは今でもよく覚えている。

初めての仕事は触媒プロンアスファルトの開発の手伝いであった。最初の触媒の探索やプローニング原料の研究のため多数の試作実験を行った。本テーマはやって製油所のプローン装置でのテストオペレーションに進み、触媒で配管が詰まるなどの事故を恐れ、実験室で初めて試作装置に成功した。本製品は高性能アスファルトフィーチャー製造用の原料として、年間数万トンの生産規模に達したのだから、今思うとエポックメイキングなことで、これの開発に係わったことは幸せなことであったといえる。

当時（昭和40年頃）の作業環境はどこも似たようなものであったが、同じようにたった一つの労働地帯である。京浜工業地帯は大気汚染が激しく、その中央部に位置するが研究部は度々工業ガスに悩まされた。またクーラーがないので夏期は非常に暑く、実験室の水の換気が感じながらマーチャルのハンマーを打つものである。

しかしこの時期石油製品の需要増加に伴う販売部門強化の要請があり、私も昭和43年8月本社へ転出し、アスファルトの研究との繋がれた。そして広島支店、米で大分営業所へ転勤し、油漬油の販売を担当することになる。

ふたたび

昭和52年3月末の大分営業所の廃止に伴い、再び研究へ勤務することになった。そして上司の配慮で以前の経験の生かせるカラー舗装の研究開発を担当することになった。カラー舗装は石油樹脂を主原料にした熱可塑性バインダーで、ストレートアスファルトと同じように加熱混合式で施工するものである。またこれを受けた舗装の開発も行った。この新しい材料を下げて、北海道から九州まで各地の舗装業者を訪問したのは今では楽しい思い出である。

そして昭和56年3月のアスファルトの研究を担当することになった。第二次石油ショック後、原油事情が変化し、色んな原材料が輸入されるようになったので、それらの原油からのアスファルトの製造や、当時普及のきときましょうの舗装廃材のリサイクル用再生添加剤の開発、ループン用プローンアスファルトの品質改善などの研究を行った。

またこの頃から本協会の委員会に参加する機会を与えられたが、本協会の活動は他の石油会社の方々だけでなく、建設業の会士、土木、建設業者等異業種の方々にも接触でき、色んな意味で非常に参考になった。今後ともこの活動は積極的に参加したいと考えている。

これから

私のこれまでの会社生活を振り返ってみると、その大半の期間にアスファルトに関連している。今や黒いアスファルトが体に染み込んでいる気がする。

最近、アスファルトは木材に似ているのではないかという気がしている。木材は同じ樹種でも年の入力方法が違うので、黒い木材は同じ樹種を同様の木の切り方が違うと黒い木材は同じともいわれている。アスファルトはそれはほどではないが黒い天然物というべきが、原油によって微妙な違いがある。しかし未だその違いを完全に認識することは出来ていない。技術進歩の著しい今日、アスファルトの素性についても、もっともっとクリヤーにする必要がある。これは石油会社の研究員の責務であろう。

私のもう一つの希望は舗装・ルーフィングに次ぐ第三のアスファルトの大きな用途を開発することである。これは大変難しいことであるが、社会の新しいニーズに目を凝らして、粘り強く努力して行きたい。化石燃料ならぬ化石人間にならないよう、現状より１歩でも向上したいものである。

Vol. 33 No. 166 (1991年)
アスファルト舗装雑感

考えてみるとアスファルトもセメントと同様最初から舗装用を目的として作られた材料ではなく偶然の産物を基にして改良して作られて来たものであるから、要求される性質が場所によって異なれば、ある程度の不具合さがあるのは当然のことであるかもしれない。また時代の要求によって原油の中の必要成分を取り出すとresidueであるアスファルトの性状が変化するのも当然のことで云えるかもしれない。したがって舗装用材料としてのアスファルトは今後も過去そうであったように要求に応じた改質が必要になりそれに関連する技術が開発される必要がある。

そもそも私がこのようなことを考える様になった原因は昭和29年秋文部省主催の西の日日に発表した民間舗装株式会社の試験に合格した事にあり、今ではそれが人生かと考えさせられるが、このためにはアスファルト openFileDialog出来た事は幸いに思っている。

昭和30年入社当時のプラントが2000ヤードであっだし人力によるアスファルト舗装の混合や、松村式5トンプラントでワークットを施工したのも現在では懐かしい思い出となっている。

近代的なプラントとしては昭和36年名古屋大学1期工事でのパーサー・グリーンの100トンプラントが印象に深く、昭和44年には大阪万博前と同じ道路公団池田本塚工区の舗装を施工させて頂いたことも良い思い出である。

しかし、最も印象に残るのは何と言ってもインドネシアの中部ジャワで計108kmの道路改良工事に35トンプラントを使ってアスファルト舗装させて頂いたことである。いまだに1工事としてこの延長記録は破られていないであろうと自負している。

私自身は特にアスファルトそのものについて試験室で研究をした経験はないが、自分で施工する混合物について自分で配合設定をし、現場ではアスファルトの量を増し、混合物の烷の色を見、混合物を握ってアスファルト量を調べ、敷き入れた層を手で触って締固め温度を判断する経験が現場での品質管理に大きく役立ったことを若い技術者に是非伝えたいものである。

現在SHRPではアスファルトそのものの化学的物理的性状についての研究を行われており、10月末にはロンドンで中間報告会が開催され、ほぼ2年後にその研究結果が発表されることになるが、この30年ほどの間に国内で使用したアスファルトは随分変わってきたいという感じが強い。第1次オイルショック後イギリスの騒動ホットロールアスファルトにある程度広い範囲で不具合が生じ、材料・配合について検討したという記事を読むと、アスファルトの変化が世界的なものであることを感じたことを覚えている。

現在では、使用者がアスファルトを選ぶことは困難であり、製造者も原油を選ぶことが困難であろうから、交通量がおお増大を続けている今日、良好な性状の混合物を確保するためには今までとは違った要求が起こってくることは避けられないと考えられるが、その対策や技術開発が必要になってくるであろう。

最近では舗装の施工が完了すると直ちに日当たり数万台の交通が通過するようになったが（集中工事などは正にその例である）、交通開放後次第に交通量が增加する路線に比較して舗装の寿命が短く思えてならない。昔から言われていたことではあるがまだこの問題についての実験報告あるいは論文を再聞にして読ませて頂いたことはないが、是非将来取り上げるべき一つの研究課題であろう。

アスファルトは舗装材料の主流として多くの人に親しまれてきたし、過去にそうであった様に今後も起こる問題が解決されて、21世紀になっても変わらずに舗装材料の主流であってほしいと考えるのは私一人だけの願いではない。

16

ASPHALT
特集：舗装技術に関する雑感・民間における舗装の研究活動

田井文夫

日本道路舗装技術部、昭和47年名古屋工業大学在籍

研究領域：舗装と私

民間における舗装の研究・技術開発活動は、技術ボンテシャルアップに関するもの、新材料・新工法の開発、保有技術の改良などとこれらの活動を通じた人材の育成ということになる。活動内容は基礎、応用、開発、期間的には短期、長期に区分される。これら区分によれば、昭和47年に日本道路舗装に入社後約13年間（東京工業大学の渡辺隆教授にお世話になった約3年を含む）の研究業務は、比較的長期に基礎、応用研究の範囲のものが多くあった。すなわち、アスファルト混合物の疲労、構造設計、流動によるわだねれ、温度ひびわれなどである。

入社して最初の1年半くらいは、舗装のことなど何も知らず、試験の時しか大学に通わなかった人間が役立つわけがなく、約3ヶ月くらいに異なる研究テーマ、難易度が低く研究結果のまとめやすいテーマにつき、試験技術、データ整理の方法などと研究の仕方の基本的なことを学び始めた。

初めて実施計画を立て研究したのは、各種アスファルト混合物の疲劳特性の評価法についてであった。研究は冒険ではない、暗中模索は研究ではない、見通しを立てるためのトライアル、考えたことの実証のための実験もという意味ものである。既往の研究の文献調査から始めた。各研究者が用いている試験装置のタイプと制御方式、温度、周波数などの試験条件、疲労寿命の定義、試験にとりあげた要因と疲労寿命に及ぼす影響度合い、各研究者の見解が一致している点とそうでない点、どこまで明らかにされているかなどについてである。TRR、NCHRP、AAPT、ミシガン大学の国際会議の論文などを調べたわけではないが、これら調査結果にとづき実施計画を立てること自体が実に一仕事であった。また疲労という切り口からレオロジー、舗装の力学的挙動、理論的な設計法へと間口を広げていくチャンスとなった。

さて、疲労試験であるが、信頼性があり検討に耐えられるデータを取るにはどうするかから始めた。棒状供試体に可能な限りダイヤルゲージを並べ、たわみ形状から弾性体として取り扱えるか、載荷荷のゆるみ対策、同じ試験条件で供試体を20回くらい試験し、必要最小供試体数を調べたことなどである。この頃、ままわりからも疲れる疲労試験といういわゆる、当方、そのとおりですと東洋の神秘の微笑もサービスして答えた。

研究結果を要約すると、同じタイプの混合物であれば、スティフネスをパラメータとしてひずみと疲労寿命の関係を整理すると、混合物要因や外的な要因が変化しても疲労寿命はスティフネスの変化では説明できないというものであった。この研究では、舗装材料としての評価が中心で、舗装構造としての評価まで十分に行えなかったのが、力不足でもあり、心残りでもあった。

次に従事したのは舗装の構造設計法についてであった。国内外の技術基準類に示されている構造設計法について背景、路床条件、交通条件、材料条件、厚さの決定法などを調べた。AASHO道路試験結果が各国に与えた影響、国によってCBR評価時の含水条件が異なるため、路盤の支持力を一定としきの上限を厚層交通条件によって変化させる設計法、交通条件等によって路床の安定処理を取入れている設計法など各国の設計法を一応把握できたのは、技術者として1つのベースを形成する上で役立った。

民間で構造設計の力が特に問われるのは、特別な荷重が載荷される場合などである。これらに対し、過去の実施例を参考にしたり、技術経験を拡張するための理的な検討あるいは弾性計算を用いて対処している。

経験的な設計法から経験と力学的・理論的なアプローチを融合させた設計法への展開を考慮した場合、舗装材料の評価、外的な条件の設計法への取入れ方法など個々の舗装技術を総合化させていく必要がある。また地元のデータの蓄積がさらに要求される。これらの延長線上のひとつにメンテナンスフリー舗装の設計法やそれに用いる材料が具備すべき品質レベルが見えてこよう。

21世紀まであと9年。

Vol. 33 No. 166 (1991年)
過去・現在・未来

10年前（過去）
昭和55年11月、私が入社したのは今から10年前である。舗装とのかかわりが始まったのはさらにその数年前に遡る。阿部先生のご指導で卒業研究をすることになった。多層構造理論でアスファルト舗装要綱による設計断面の妥当性をチェックするというのがテーマであったように思うが、それ以上のこととはあまり思い出せない。要するに何も理解していないかったのだと思う。従って、書き上げたレポートも何だったのかわからないものとして以後研究室の語り草になっていくようである。この頃何故かアメリカへ行きたないと思うようになり、気がつくとイリノイ大で舗装を専攻していた。マーシャル試験、60°C粘度試験、FWD、大型回転式の舗装シミュレータを目当にしたのもこの頃である。しかし、好きな映画に夢中になり過ぎたこともあり、何故か赤点の脅威にさらされたが、その都度何人かの先生が私の学力を真剣に心配し、救済して下さった。Thompson, Darter, Carpenter, Barenberg, Dempsey, Shahin の各先生にはこの意味で大変お世話になったし、今でも彼等の名を報文の中に見つけると懐かしい気がする反面、もう少し真面目に勉強していたら良かったのとうぐく返省する次第である。何とか無事日本に帰ってきてしまえば、もう阿部先生に連れてアスファルト協会の舗装研究グループに参加させて頂いた。学生時代の惨憺たる状況から考えると、これが舗装のなかわりの本格的なスタートだったと思う。

長所と短所（現在）
物語には必らず長所と短所があると思う。人間もそうだ。また、長所より短所に目が向かうものも事実である。舗装を例とする。材料・工法の長所・短所の量あるいは質のバランスは様々であるが、どうしてもこれを総合的な評価で良いものが選ばれるという見方をすることが多いように思う。舗装技術をメニュー（定食）化するのも大切であるが、客の注文に応じた一品料理も、嗜好を満足する点で長所を最大限に活かすことに通ずる存在感があると思う。混合物の配合（処方）をRecipeと呼ぶのもこの一品料理の発想のように気がしてならない。
しかし、この“混ぜ物”がなかなかやっかいな代物である。最近、アスファルト混合物に確かにしたゴム粒子を混合した特殊な“混ぜ物”について研究している。ところが、この骨材粒子度、アスファルト量、ゴム粒子の粒度などがRecipeがいわゆる通常のものと異なるというもので、混合物としての素姓がはっきりせず、パニックを起こしそうな有様なのである。とはいえ、素材の持ち味を活かしてどのような一品料理をつくるかは私自身の今後の楽しみでもある。

維持修繕時代（未来）
ドイツ（旧西ドイツ）の舗装率は既に99％に達している。ヨーロッパではこの他にも高い舗装率を達成している国々がある。わが国はまだ70％程度であるから、これらの国々の舗装業界がどうなっているのか興味深い所であり、国情は異なっても、民間における舗装の研究活動のあり方を探る上で参考になるものも多いのではないかと思う。SAMIやスプリットマッチアスファルトなどは個人的に興味を惹かれるものである。わが国でもリサイクルや改質アスファルトなど維持修繕に関する技術は多種多様にあるが、既設舗装の評価・診断から材料・工法の選定さらにはその経済性の評価までを含めたトータルなシステムとしての維持修繕技術が必要になる時代かいずれ訪れるであろう。そのためには個々の材料・工法の長所を最大限に活かすシステムに関する研究が必要ではないかと思う。

私と舗装とのかかわりはちょっと10年を過ぎたばかりである。今後の10年20年を考えると、反省材料をこれ以上増やさないためにも、書き残した卒業研究レポートをできるだけ早く提出するつもりで………が今の心境である。
丹治和裕

1. 舗装との出会い

私は、昭和49年に.HttpServletに社員として日本大学大学院を卒業した後、入社してからもコンピューターの利用をベースとした建築現場の環境モデル解析や環境アセスメントの更新に大気汚染シミュレーションモデルの開発等に従事してまいりました。

このような私が舗装と係りを持つようになったのは、昭和52年秋からです。きっかけは、地方建設局の方から路面状況の予測ができないだろうかとの話があり、統計的手法で対処できるだろうとの上司の判断で私が担当することになったからです。舗装については門外漢の私は、その後はアスファルト舗装要素の面積や道路維持修繕要素さらには道路係経費のよくありの毎日が始まりました。T・CBR、材料、交通流等を説明変数とした予測モデルでチャレンジしたのですが、適切な高いモデルが得られず懸念を断られたことが昔のように思い出されます。

この経験から
①一見簡単に見えた舗装技術に如何に複雑な問題が内在しているか。
②解析に使用するデータの信頼性が如何に大切であるか。
③舗装の分野にいろいろな統計手法が応用できそうであるという認識を持つようになりました。

舗装との出会いが強烈であったことから何とかして舗装という“化け物”を料理してみたいという気持ちに駆られ、路面状況調査を主業務としていたセクションへ異動するとともに、本格的に舗装と取り組むことになりました。

2. PMSをめざして

舗装と本格的につきあい始めましてから、予測式の開発、評価式の検討、データバンクの開発等の仕事をさせて頂いてまいりました。これらの仕事を通じて建設省はじめ各機関の舗装の専門家の方々と、さらには、当協会のアスファルト舗装技術研究グループに加えて戴き、大学あるいは民間の方々とお付き合いさせて頂くことができたことは、この上なく幸せなことでした。

現在舗装の分野では、PMS（舗装管理システム）あるいはPMMS（舗装管理システム）の確立が大きなテーマの一つとなっております。このテーマは私が今まで係ってきたものの集大成と認識を自負勝手に持っておりますので、この紙面をお借りしてPMSの確立に向けての課題と考えていることを列記したいと思います。

点検、調査の適正化
①正確な点検の明確化及びシステム化
②路面性状調査の適正化
③たわみ測定技術の確立
評価、予測方法の体系化
①検査評価の基準化
②利用者、住民側の評価の確立
舗装寿命予測の確立
①優先順位、工法選定方法の体系化
②ライフサイクルコストの算定方法の確立
③維持修繕計画支援システムの確立
④長期修繕計画等のシミュレーションシステムの確立
舗装維持管理データベースの確立
①PMMS用のデータベースの構築
②運用体制の確立

独断と偏見で整理しましたが、これらの課題に対処するには官学民のが一層の協力体制が必要ではないかと考えます。

これからの方々の皆様は“女老外（ローライド）”の時代と思われられてもおります。女性、老人、外国人を紛めたものですが、この言葉の意味するところは、“美しさ、安心、安全、しっかり”がこれからの方々の時代の代表的な価値観としてクローズアップされてくることだと思います。当然のことながら、舗装にもこの価値観が入っていくでしょうから、舗装の施主、味方も変わっていくものと思われます。私の能力の及ばず範囲かどうかわかりませんが、気持だけは持っているつもりです。これからもご指導ご鞭撻をお願いいたします。

Vol. 33 No. 166 (1991年)
特集：舗装技術に関する雑感・民間における舗装の研究活動

舗装研究雑感

千葉博敏

ちば ひろし
日本舗装技術研究所
昭和43年北海道大学工学部
土木工学科卒。
勤務先：〒140 品川区東品川3-32-34。
℡03-3471-8541

大学4年生の夏休みに舗装工事の現場でアルバイトをしたのが事の始まりで、以来、今の会社に入社して、現場7年、設計・エンジニアリング部門18年、そして、研究開発部門6年、計31年間の職業でございます。まさに、光陰の矢を知れず、単に年齢を重ねて来た感しかありません。

この31年間に、色々な形で舗装に関係してきましたが、特に、最近6年程、舗装に係わる研究開発に関係してみて、そのむすびつきを身にしみじみ感じている今日この頃であります。

ご承知のように、舗装研究会は、砕石、砂、アスファルト等をはじめとする大量の材料を使用してアスファルト混合物等の混合物を製造し、舗装を行なっておりますが、基本的には、材料メーカーではありませんので、混合物のとよとなるそれぞれの材料に対して、その品質を自由に設定することができません。それに、必要にせまられて、自ずからが希望する仕様の材料の製造・供給をメーカーにお願いすることがありますが、それは、ごく限られた範囲にとどまります。

従って、これらの限られた、もしくは不自由になる材料の組み合わせ、舗装に使用する混合物を新しく研究開発する場合、その新しい混合物に付与される付加価値や機能は原材料の特性や品質にその大部分が支配されることとなります。そのため、より差別化されたあるいはより画期的な混合物を生み出すことは、それがアスファルト系であり、セメント系であれ大変むずかしいのが現状であります。

「材料を制する如何」が技術を制する」と良く言われますし、道路舗装会社の研究開発は当社のような理由で、いつまでも一定の枠からはみだせないものかと思っております。

又、室内試験で良い結果が得られたものでも、実用の段階になりますと混合物の製造、運搬及び施工性の面で、室内試験では予測しきれなかった問題が良く発生します。更に、その耐久性の評価となりますと多分の時間とマンパワーを必要とします。

このようなことから、道路舗装会社における研究開発は、材料メーカー、機械メーカーとの共同研究、あるいは、基礎的な部分では大学との共同研究、又、耐久性等の評価については発注機関にお願いしての試験舗装等多くの方々との御協力と御支援がどうしても必要になります。加えて、何か新しい材料、混合物あるいは機械、工法等が世に出て認められるまでは早くて3年、長いものでは5～7年程度の期間がついたものであると常におっしゃっております。それに対して、世に出して認められるものはまだ良い方で、途中で消滅するものが大半であります。又、他者に先き駆けて出したものでも、その源となる部分（原材料）が大半小異なために、決定的な差別化や特許性を付与することなどがむずかしく、一番努力を出すことが容易ではないかと私は思います。

このような背景や条件のもとで、舗装の研究開発に従事する若き技術者達は、いつの日か舗装の事業に役立つか、会社の業績向上に寄与できるような結果を夢見て、やって失敗しても、それが舗装の技術分野や会社に役立つ役立つ1つの技術基盤になることを信じ、このむくいの少ない研究開発に身を投じて、日夜地道に取組んでおります。

道路は文明社会において、人、物資、情報を交流をうながす重要なインフラストラクチャーであり、又、その国の文化そのものとも言われてきましたし、今後とも道路は文明や文化のない手であるべきであろうと思います。

どうか、このような役割の一端をになっている若き研究者達に対して、今後とも暖かいご指導を賜りたいと思いますとともに、変わらないご理解とご支援をお願い致します。
特集：舗装技術に関する雑感・民間における舗装の研究活動

南雲 貞夫

1988年に始まった SHRP の途中成果らしいものを見聞する時期になった。アフサートルに関する SHRP のテーマは舗装供用性をベースにした規格作りであり、従来のアフサートルの規格に対する、供用性を反映していないという以前からの批判、指摘に、その回答がようやく得られるのかと思う。

建設省土木研究所の舗装研究室で赤羽にあった畑は研究業務といえば専ら室内の材料試験だったと記憶する。昭和35年に千葉に移転してからは大型の試験機が増え、現道上の試験舗装もいくつか始められた。昭和54年の筑波移転に際しては施設整備が著しく進展し、とりわけ無人運転の荷重車を備えた舗装走行試験場の建設計画であった。住宅側のシミュレーション装置として、スパイククレーティング試験場、回転ドライプ型摩耗試験場、水温ホイールトラッキング試験場、鋼床版舗装の疲労試験場などがあり、次いでより現道に近く、しかもスケール可能な舗装走行試験場があまって、さらに全国的な規模で現道上の試験舗装と供用中の一般道路舗装の観測が行われた。このように、室内的単なる材料試験と現道の供用性との関を有機的に連絡する施設とシステムが、理論面は別にして筑波移転を契機に一応整えられたわけではない。

官民の研究所は本質的には変わらないところがないと思う。しかし、最大の相違のひとつは、民では上述のような室内と供用との間隔を埋める現道も含む施設が一部の大企業を除けば皆無というものである。たまたま、さら特殊バイナーに関心をもって様々な評価試験を経て現道への採用の機会に恵まれた。しかし、予想に反し短時間で相対サックなどを生じ、供用に耐えられなくなった。幸い道路管理者様の絶大な御理解を賜って貴重なデータをうることができたが、このような事例はそう度々許されるべきものではない。バイナーの評価システムの有無あるいはノウハウも結わって個別の問題かも知れないと、少なくとも標準的な在来試験法の範囲では適確な評価はきわめて困難である。そこで、現道の条件にできる限り近いシミュレーション施設が解消の近道を与えてもるはずだと容易に考えてしまうが、そのような施設の存在は非現実的とも言えてよく、従前同様、現道への採用の機会をうかがいながらバイナーの供用性評価という解明困難な永遠の課題に取り組まなければならないのが現状であろう。

社会の多様なニーズは舗装材料と改質バイナーの多様性を産み、その開発を進めるさせた。改質バイナーの開発と選択に際して重要な供用性評価は研究課題とはいえあまりに大きく、むしろ、絶えず念頭において知識の吸収に足をなすならばならない目標である。そして、改質バイナーと深い関わりをもって排水性アスコンの耐久性向上を最近のムードに同調するために、まず当面の最重点課題として取上げなければならない。

次の課題は何かという課題の把握、選定が研究活動の一環であるなら触れたくなければならぬ。潜在ニーズの発掘、顕在ニーズの収集などを外部の情報に依存する以前に企業内数々の技術者の知識を結集することをまず考慮したい。それは一定の提案制度であり、個々の職員のアイデア、ヒントが常時提供されストックされる。これらアイデア等はすべて開発委員会に名され、評価と選択が行われる。また十分利益に乗った制度ではないが、個々のアイデアはいずれも興味深く、重要なヒントが隠されていることがうかがわれる。

これらアイデアから新技術へと結実するテーマを見出すのは至難であるが、新技術の開発をねらいながらあらゆる時代の状況に対応するため、また企業の宿命として業界の先行集団との差をできる限り縮めるための努力を刻々ながら継続していかなければならない。
野々田 充

企業の寿命は、30年といわれている。これら世の中の変化を読み取り、企業体質の改善・補強をしていかなければ、その存続すらむずかしい。

このごろ新聞をこぎわっている米の輸入・自由化問題を聞いていると、土木業界のことは大いにお危機である。声高にいわれる海外との自由化問題の影響で、本当に大きな影響を及ぼす国内の自由化問題が動いている点からも、農業問題と似た体質を感ずる。

これらの中で人や企業が生き残っていくには、新技術の開発しかないのではないか。そして、いかなる変化に対応しうる体力をつけて、半歩先を行なえば、夢も語れなくなってしまうだろう。

4. 先端的とは

研究の進歩が技術の革新をよび出し、結果として新素材・新商品が生じてくる。エレクトロニクスやバイオの世界では、3年経った文献は使えないという。急激な進歩がすすんでいる。

各企業がこの変化にいかに対応するか懸命な努力が払われている。しかも、エレクトロニクスやバイオを行なっている企業が先端ではない。現実の企業にとっては、手掛けていた内容・技術・商品が先端でないことには、意味はないのである。そこで“先端”についての判断は、むずかしいものになっている。

我々の農林業界においてさえも、時代の変遷・価値の多様化によって商品も変わる。たとえばヒット商品が出て、鶏の鶏肉の目で同業者に追随し、一方では、生活関心を発展・新技術を排除する風土もある。

全く何を研究・開発テーマとするか、むずかしい問題である。

5. 終わりに

いまだ自分の経験や実績をふり返るほどの経験もない。力もない。そのため、いまだ迷い、言葉なく立ち止ってしまう。しかし、みなさまも大きな“夢”を語りましょう。夢こそ未来への原動力です。
アスファルトの特性の実感

私が初めてアスファルトに触れたのは、大学4年の初秋に、研究室の片隅に置かれてあった18リットル缶に入ったものをいただらした時である。缶の中の黒い物質を見て、コールのクリアかな？と思い、缶に貼ってあるラベルを見ると、ストレートアスファルト〇／〇（80／100と思うが覚えていない）と印字されていた。「これがアスファルトか、どれもしてみるか」と指でついてみた。この時の感触は、今でも指先に残っている。

ゆっくりと圧さげるとシワともぐり、固いような、軟らかいような何とも妙な感触で数mmへこんだ。圧させをやめて指を離すと、四部に指紋が残っていた。翌日、中を覗くと、指紋がわずかに残りへこみが消滅していた。

この時、授業での「鍛造工等の溶接作業」の実習は、温度制御によっては固型物でも、液体としての性質をもっている」という話を思い出した。常温下のアスファルトが液体であることを実感したことを記憶している。

その後入社してからアスファルトの性状試験、アスファルト混合物の性状試験、およびアスファルト舗装のフィールド調査等を行うこととなった。

今になって思い返すと、これらの経験を通じて肌でアスファルト単体、および混合物の特性を、おぼろげながらてはまるか感じることができるような気がする。

皆様にとっては、既知のものばかりで恐縮とは思うが、自分で手を汚すことで実感できたもののうちから、特に印象的なものをいくつか述べさせていただく。

○感温性を実感したもの

①引火点試験などでアスファルトを加熱すると、最終的には水のようにシャボシャボになるまで粘度が低下する。また、逆に凍結点試験等で温度を下げると、ガラス状の脆い状態になる。

②試験温度を変化させて曲げ試験を実施すると、曲げ応力が変化し最大値が存在する。また、曲げ応力が最大を示す温度（脆化点）付近を境に、曲げ歪みが大きく変化する。

○温度依存性を実感したもの

①定ひずみ速度で曲げ試験をおこなう際に、載荷速度度を変化させた場合、温度と曲げ性状の関係（脆化点）が、載荷速度が速くなると高温度域に、速くなると低温域にシフトする。

○応力緩和性状を実感したもの

①アスファルト混合物の熱膨張係数を測定すると、数十マイクロとセメントコンクリートより大きな値が得られるにもかかわらず、アスファルト舗装では目地を必要としない。

②温度応力の測定実験等の際に、供試体を設置した時点で歪みが生じ応力が発生することがあるが、放置すると応力が消失する。

○老化性状を実感したもの

①屋外に暴露したアスファルト混合物または舗装後のアスファルト舗装から、アスファルトを回収し、性状および組成を確認すると、経時的な変化が認められる。

②老化の進行は、舗装表面付近で最も進行するが、表層のみならず基層以下の深部まで達する。

以上に示すような基礎的な経験を基に、これらはアスファルトの改質、再生用添加剤の組成と再生効果、補修用アスファルト混合物の耐久性の向上、老化性状の評価手法等、主としてアスファルトをベースとした舗装材料に関する業務に従事してきた。

今後も、これまで同様に舗装材料に関する業務に従事していきたいと考えているが、舗装材料に要求される性能等を知るためにも、舗装の評価等他の分野に関し、一層勉強する必要があるものと考えている。

最後になるが、舗装材料中心で歩んできた自分、弾性理論に基づく構造計算やPMSの知識等、様々なものを学ぶ機会を与えいただいたアスファルト舗装技術研究グループ（前グループ長：日本大学阿部篤教教授、現グループ長：北海道大学成野賢治助教授）の存在を忘れることができない。今後も、このグループに多くの若い方々が参加されることを希望し、結びとさせていただく。
舗装技術における
複合化について

野 村 敏 明

のむら としあき
目黒化学工業㈱技術研究所
主任研究員。昭和52年度繊
工業大学大学院工学研究科
修士課程修了。
勤務先：〒329-84 埼玉県
上尾市東町1丁目272。
☎0385-44-7111

私が舗装に携わってからもう10年だった。この
間、結婚、子育て、いわゆる生活
変化があり、また体力の低下とともにわだちの体から
年寄り扱いされるようになった。一方、仕事面では年
齢的に立場の高い立場に立つようあることから、
今以上に舗装分野における技術の習得に努力をしてい
かなければならないと肝に銘じていることである。

さて、ここで私の経験を簡単に述べてみる。大学時
代は化学工学を専攻してガスクロ、水銀ポリシメタ、
比表面積計などの化学機器を使用し、メスビペットや
メトール直示天秤を用いて0.1mgまで計量するといっ
た、今から思い出してもまさに化学的な実験を行って
いた。大学を出てからは、某機械メーカーで機械設計・
製図に数年携わり56年に現在の会社に入社したアスファルトに関する研究業務に従事している。したがって、
大学時代からの経験は化学工学、機械工学、土木工学
と移り変わり、それに伴い日頃取り扱う単位がkgから
トンに変わる。そのため近頃は、自分でも
何か専門で得意なのかよくわからないってきている。

昔の舗装材料メーカーとはいうこともあって、土木
系と化学系の人が混ざっている。そして、私がはじ
めてアスファルトに関する試験を行った時、そこでも
土木の背景と化学の見方とが混ざった試験方法が多いこ
とに違和感や戸惑いを感じたものであった。道路舗装
技術は経験工学であって、経験と実績がものをいうと
いわれることがあるが、理論的に説明できるところは
理論で、また土木と化学の分離と調和に対してむりす
をつけることが必要と思った。しかし、現在ではまっ
たくいうだまじような質問を出しても変わらないで
おり、その意味では私も舗装にとどまっていき
たと感じている。

また常日頃感じていることに、舗装分野においては
機能がまだ足りていないということがある。たとえ
ば、施工機械に合わせて材料を開発または材料特性を
変更するとか、施工機械の開発が少ないため新しい工
法が生まれにくいとか、機械の自動化やロボット化が
遅れている、といったことがあげられる。舗装は土木
の中でも有効（？）が小さいことも、小さな施工業者が
多いこと、技術開発をしてもメリットが少ないこと、
などの理由から舗装業も思うように進まないのだろう
が、舗装における機能化はもっと積極的に推進すべく
課題であるといえる。

あと9年で21世紀に入るが、今後の建設業界は、「高
齢化」、「成熟化」、「多様化」と「高度化」、「国際化」、「情報化」
などがキーワードとなり、それに対応した技術開発が
必要といわれている。舗装に限った技術開発について
も同様であり、高齢化・高度化に対応した施工機械の
自動化やロボット化、多様化に対応した新しい材料・工
法の開発、情報化に対応したエレクトロニクスを駆使
したシステム化・合理化などが一段と要望され進展さ
せる必要がある。そして、それらのためには、土木、
化学、機械といった個々の専門分野にこだわることな
くこれらの組み合わせ、あるいはこれら以外の専門分
野との組み合わせによる新しい複合化技術が特に必要
と思われる。

私がアスファルト協会と接続を持つようになったの
は、舗装技術研究グループの一員に入りさせてもらっ
てからである。それまで、桜の片田舎で改質アスファ
ルートやアスファルト乳剤などの材料研究を進んでい
ていた者にとって、研究グループを通じて多くの
機関のいくつかの分野の人々が接することができる
ようになったことは、非常に大きな特典を与えられた
と感謝している。

また、途中3年ほど北海道支店に勤務して、現場の
技術を少しは知ることができたこと、路面性状調査に
基づく舗装の維持管理システムの開発を通じて総合的
評価の重要性を感じたこと、などもよい経験であった。

以上のような経験を生かして、今後の舗装技術の発
展に少しでも貢献できるように努力しようと思う。
そしてこれから

羽山高義

内定していたある大手食品メーカーを断って舗装の業界に入った。それほどの会社だったかと言われれば、返す言葉もない。しかし、いままだかつてこの世界に入したことの悔やんだことはない。

無論、この業界にも課題はある。者の建設業離れや業界の前近代的体質が مما々されている今日、これらのが問題解決は、仕事愛する者に課せられた大きな使命であろう。

（専門）

あなたの専門は何ですかと問われた時、はっきり言って返答に困ってしまう。18年間も舗装の技術に関わっていて、これではまずいと思っている。

私は幸せなことに、入社以来、優れた先輩に恵まれてきた。こうした先輩は例外なく核となる専門、それも複数を持っている。そして、専門外のことでも適切に対処できる。かつての上司の言葉を借りれば、こういう人を「π型人間」と呼ぶらしい。

すなわち、縦を深く横を広さとすれば、ある分野について深く造詣を持った人を「1型」、加えて広く何ででもなせる人を「T型」、さらに専門を複数身に着けた人を「π型」という。

残念ながら、私はどれにも該当していない。しかし悲観はしていない。程度問題を無視すれば、どれかにあてはまる。浅く広くを取り組むのを「−（ハイフォン）型」とすれば、「−型」から「T型」から「π型」を目指す手もある。

（出展）

そんな訳で、人に誇れる専門もなく、言うならば将棋の「歩」として生きてきた。しかし「歩」でも「歩金」になれるし、「王将」を倒せる夢もある。

「歩」は、色々な仕事をさせられることに、色々なところに行かせてもらえる。

今までのところ、出張等で、国内41都道府県、海外8か国に行くことができた。振り出しの技術研究所では主として安定処理に携わり、試験施工や土質調査に

行く機会も少なくなかった。しかし、サーフェスリサイクリング工法専任として本社配属となってから、出張の回数は激増した。平均2泊3日程度で本社／現場の行き来を繰り返し、全国各地をめぐり歩いた。今になってみると、この時の経験は自己の成長にとって大変であった。

ひとたび出張すれば、本社の専門家として扱われる私に知識も経験も豊か人に判断を求められる。夕食の時酒を飲めば、現場の本音がチラチラと出てくる。優柔断絶の態度を示したり誠意のない対応をすると、もはや信頼関係の生まれる余地はなくなる。

（技術）

私は、短期間ではあるが現場代理として工事に従事したこともある。だが、本質的には純技術の育ちであり、本当のところ現場の人との揺るぎない一目を置いている。日夜第一線で頑張っている彼らの前では、身掛けの技術はたちまち化けの皮が剥がされてしまう。

技術とは、理論の積み重ねではない。良いものを、より早くより安全に、そして経済的に提供する手段である。仕事を出す人も、仕事をもらう人も、皆そんな喜ぶ技術でないと伸びて行かない。私は、何時もこのことを肝に銘じておきたい。

（これから）

浅いとはいえ、これまでに色々なことをさせてもらえた。土も、アスファルトも、少なくとりコンリートも。研究開発のハードばかりでなく、技術管理や技術従事したことも手を染めた。しかし、私のやってきたことは、まだ幾つかの「点」に過ぎない。

私は「歩」であるかから、これからどうなるかは分からならない。しかし、舗装の仕事が好きである。案外、努力の報われる世界もある。僕ではあるが自分のオリジナルを残すこともできた。笑われて出願した技術が特許になったりした。この仕事を続けるかぎり、こうした「点」を足掛かりに、自分の幅を少しずつ広げて行きたい。そして深みも。

何れにせよ「歩」は一歩歩進む。
転身（化学から土木へ）

§1 鋼装との出会い

学生時代就職活動を始めるまで、舗装に関する仕事
に従事することは思いもよらなかった。

「そろそろ就職先でも探そうか」ぐらいの軽い気持
で教務誌の求人票をめくっていた。当人のような、
ほとんどが化学分野の求人であった。中には機械系や電気系といった分野も含まれていたが、だいたいが化学
の必要性を有する分野であった。その中に1枚、まった
く毛色の違った土木の求人が混っていたので
ある。主な職務内容の欄にアスファルト舗装に関する
調査研究と書いてある。

なぜ土木で化学の卒業生が必要なのか見当もつかなかっ
たが「きっと何か証が右石で募集しているのだろう
」と以前から持ち合わせていた野球手相模原の猪が頭を持
ち上げて応募することにしたのである。会社を訪問し、
面接の時にはじめて化学の卒業生が欲しい訳を説明し
てくれた。当時は道路の舗装率が低く舗装事業の伸び
は大きく期待できるが、北陸では摩耗という問題から
徐々にアスファルト舗装の改良が著しくて、
ゴムや化学物質の使用が検討されていた。

「土木技術者にとってカネノコは見ただけで拒絶反
応がおこりジンマンがでてしまうので、今後舗装材
料の研究開発を行っていくためには、どうしても化学
に頼る人が必要である」というのが理由であった。

よく「欲がられる時に行かなければ一発幸せ」という
が、それならまったく違った分野で活躍するも面白
いじゃないか、という訳で今の会社に就職したのが
舗装との出会いである。

§2 舗装のイロハを知る

期待と不安で入社して最初に勤務したのが新潟市
にあるアスファルトプラントの試験室であった。主な
業務はアスファルトプラントでの品管管理と耐摩耗性
混合物の研究研究であった。

プラントでの品管管理といっても初めてアスファルト
に触れ混合物を作るのである。なぜ判断するに舗装
要綱を片手に配合設計を行ない、諸先輩達に教わるな
がら合材出荷と品質管理を行った。日常管理の中で最
初にぶつかった問題はアスファルト量管理であった。

プラントの計量値と抽出アスファルト量がなかなか一
致しないのである。プラントの計量器のチェックを行
ったり、ソックスレーや遠心分離機を使って抽出を行
ない、焼却法で確認をしたり、細針のパラツキを調べ
たり、試料のサンプリングによる誤差を調べたり、あっ
という間に2〜3ヶ月が過ぎてしまった。結論的に
は抽出試験は誤差の発生する要因が多いので、管理で
使うには慎重に行なわないと混合物の代表値とはなら
ないということであった。むしろ製造過程での計量管
理の方が精度がうまく思われた。（当時は印字記録は行な
われていなかった）

管理業務のあいだに耐摩耗混合物の研究を始めたの
のもこの頃である。当時の新潟地方は簡易舗装の仕事が
ほとんどで、その構造は35mmの密粒度アスコンの上に
摩耗層として15mmのアスファルトマスタングを設けたワ
ービット舗装であった。この摩耗層用の混合物の研究
に組み込んだのである。当時新潟県下に1台しかないラ
ベリング試験機を使い、夏でも防寒服を着て冷蔵庫
の中で実験を行っていた。

又、時間を作っては、当時穂毛名にあった建設省土木
研究所舗装研究室および勤診にあった化学研究室で勉
強させて頂いたことが今日の基礎となっていることは
言うまでもない。

実験室で舗装材料の研究を進めていても、その材
料が実際に施工され、舗装体として評価を得るもので
なければ意味がない。目的にあった舗装を作るには、
材料の研究と同時に施工及び施工管理の把握も研究を
進めうえで重要なポイントとなる。

そんな考えから、次のステップとして舗装現場の施
工と施工管理を勉強する機会を得た。主に高速道路の
施工および施工管理を行ないので、施工側から見
た材料への要望、施工上の問題点等について勉強した。

このような経験が現在の研究活動の基礎となって
いるものと考えている。
私が舗装を生業とするようになったのは、極めて安易なきっかけによるものであった。大学4年の秋、就職担当のS教授に相談に伺った時、教授は私に「全国区と地方区のどちらかがよいか。」と問い、私は「全国区が多い。」と言った。以下「君は高いところは平気か。」「暗いところは長時間いることができるか。」「長時間泳げるか。」と質問は続いた。これに対する私の答えは当然「ノー」であり、その結果私の手元の業務を示された数多くの会社案内の中にはいくつかの道路会社が含まれたこととなった。その中で現在の会社を選んだのは収録の手順に言えば会社案内が立派であったということ、誠に恥ずかしい理由によるものであった。学生時代、道路工学については植下先生の講義を受けたが、いさか加減な学生であり、今から考えれば本当にもらったいないことをしと反省している。

こうして日本道路㈱に入社し、今年もようやくで約11年間を技術研究室で過ごした。十年一昔、昨今では5年、いや3年一昔と言われるように、今から考えれば入社当時と現在では確かに隔世の感がある。そのころコンピュータは紙テープで動作していたし、ワープロもなく覚書の書をしで一日を費やしたことをさえった。ある意味では余裕があり、悠長であったとも言える。余裕といえば、入社してからの私の与えられた仕事の一つに洋文献の和訳することがあった。もちろんテクニカルの文書を書くわけもあり、教育の為とは言え、非効率化することと言わざるを得ない。たとえばオーガニゼイの文献のspring deflectionなどは素直に「春のたぬみ」と訳せば良いものを何か意味があるのではと辞書をひっくり返して「そとたぬみ」と訳すなど、真っ赤になって返却させてきたことを思い出す。これらの経験が後々役に立ったことは言うまでなく、今から考えれば余裕のあった時期であったと思う。ややましくさえ思う。

本題に戻り、私のこれまでの研究であるが、入社して初めて携わったテーマは土質安定処理であった。土質安定処理の中でも特に石灰安定処理について、土中粘土鉱物と添加剤の化学的反応を調べるもので基礎研究の位置づけて、示差熱分析法やX線回折、IRといった機器を使用して研究を行った。石灰土の水反応性に影響する因子として土中粘土鉱物の種類とその結晶度が影響することや、複合して添加する材料としての結膜的な役割を期待するならば溶解度が高いものが望ましく、また粘土鉱物の陽イオン交換性とも関連がある事などポララン反応のメカニズムにできるだけ詳しくと試みたものであった。ASCEの文献なども、いくつか読んだことを思い出す。このように研究の第一歩が土を対象としたものであったことは、今から考えれば、その後アスファルトを対象とした研究を行ううえでのベースとして有用であったと考えている。その後の研究テーマは、改質アスファルト、熱処理法、アスファルト系材料についてのものであった。しかしながら、それらのほとんどが現実適用のための材料評価とカタログデータの収集であり、それはそれで意義があったと思うが、これらは日本道路協会などで発表したりしていることもあり、あえてここで特筆すべきものでもいないように思われる。本特集の主旨に反するように申し訳がないが、ある意味では、企業内研究の限界であるとも言えるのではないか。

技術研究室の所属ながら、高速道路の試験主任として1年半ほど北海道で過ごした。自分が設計し、混合物で道路ができるというのは、やはり魅力のあることであった。開通時の喜びもひとしおであった。自分の手がけた、あるいは関係輔の舗装の耐久性が非常に気がかりなものである。研究者というよりもむしろ技師として、メンテナンスフリーフィールを挑戦していこうと考えている。

今の私は技術者と呼べるものかは、全く自信のないところであるが、企業に勤務するものにとっては、たとえ各社が自信のある舗装技術を持ち寄ってのコンペといったものに行われないかと期待するものである。

藤田 仁

京成大学地域部・流通学部
昭和54年 \textcopyright 10育大学工学部
土木工学科卒

住所：〒114 大田区多摩川

\textit{Vol. 33 No. 166 (1991年) 27}
舗装も 3K といわれるが、若い人に魅力をもつといわれている。舗装は本当に 3K なるか否かに魅力をもつのである。魅力が大きい。実際、将来進むべき分野として自転車の対象にされていないのが実態で、その理由は 3K 以外にあるのではないかと考えられる。

戦後の荒廃した国土を再建し、経済大国とされるまでに我々が国を発展させてきた背景として、舗装事業の果たしてきた役割が大きい。舗装事業は、昭和29年以降の第一次道路整備5ヶ年計画を創成期とすれば、その後の発展期を経て第二次道路整備5ヶ年計画を実施している現在は、成熟期を迎えているといえよう。

一般に、事業の創成期および発展期には技術開発は盛んだが、成熟期には技術は安定し、これ以上の発展は必ずしも重要とされていないと考えられる。舗装事業は成熟期にあると考えられているだけに、技術はすでに完成し、はやこれ以上の開発の余地はない一般に考えられているのであろうか。

若い技術者の多くは、自分なりの力の発揮できる生きがいの分野を求めているはずである。しかし、若い技術者に、舗装は技術的にも成熟し置かれていて、若い力を発揮する余地のない分野として考えられているとすれば、将来の進むべき分野として対象とされないのは当然である。

10年以上も前になるが、建設省土木研究所に在任中の新規採用者の研修での採用者の一人が、「行政職を希望したのに、研究所の研究職に配属されて不満です。というのは、ダムにしろ、橋梁にしろ、土木技術の重要な課題の大半は健在生がすでに完成してしまっていて、私がこれから的人生をかけるような課題は残されていません」といったことがある。私は、当時の土木構造物の防錆防食の研究をしていたので、橋梁を例にとって次のように答えたと記憶している。「確かに、本州四国連絡橋などの長大橋にいたるまで橋梁の構造設計技術は、耐風性、耐震性といった近年の高度技術を含め、先進国の研究で長足の進歩を遂げている。だからといって、今までの研究で橋梁工学がすでに完成しているとは思えない。何故かといえば、橋梁の設計寿命は50〜100年で、このような長期の供用期間中に欠けとなる橋梁の塗り替えをしなければならない。構造力学的には極めて合理性の高い今の橋梁の構造は、腐食しやすいと同時に塗り替え作業が極めて困難な構造となっている。設計寿命を50〜100年として設計するのであれば、維持管理の点でも合理性のある構造であるべきである。真にあるべき構造とはどのようにものか、真の橋梁工学の確立はまさにこれからだと思う。」

この話を聞いて、この新人は何となく焦らずとしない様子だったが、一ヶ月ほどして「新たな気持で、研究に取り組もうと思う」。と元気良く決心のほどを聞かせてくれた。

舗装事業はまさに成熟期にあるが、舗装技術は、今、新たな転機を迎えている。舗装のマネジメント・システムの開発をはじめ、排水性舗装など交通安全対策上効果新しい舗装の開発、補修工事の頻度の少ないより耐久性の優れた舗装の開発、労働力不足を補う自動化施工システムの開発、さらには、都市づくり、町づくりに寄与する景観舗装の開発など、多様化、高度化する社会ニーズにいかに答えようか、従来とは異なった、新しい観点からの新しい技術課題が山積してい

舗装技術の新たな展開に、若い技術者のフレッシュな力が期待される。にもかかわらず、若い技術者に舗装にたいする関心が薄いということは、舗装技術の現状、すなわち、舗装が魅力ある分野であることが、広く理解されているわけではないであろう。若い技術者にたいする舗装技術の魅力の積極的なPRを期待する。
私の専門は？

入社試験での人事担当者と私の会話です。担当「コンピュータは使えますか？」
私は「ベーシックでならプログラムを組みます。」
担当「ソフト開発の仕事をしたいですか？」
私は「コンピュータを道具として使うなら良いのですが、仕事としてソフトを組みたくはなれないです。」

入社して最初に与えられたテーマが、横断状態測定機のソフトの開発。

学生時代の専門が海洋拡散。いくつか提案されている方式の妥当性を検討するため、模型実験で得られたデータを用い、自分でプログラムを組んで解析。卒業したら、コンピュータとは縁を切りたいと考えていた自分の目論見はもののもごとく覆され、每日残業の生活。しかしながらこういう仕事が根っから嫌なわけではない。何だからんだと楽しみながら気がついたから入社して1年。その間2ヶ月程現場に出てもらったものの、高速道路の工事で、私の担当は規制と出来形の計測。直接舗装には携わらず、最初の現場は終了。そしてまたソフト開発。

現場を知っていた方が本人の為になるだろうとの親心？から福島営業所への転勤。これで少しは舗装の仕事に携わることができだろうと思っていたのが......

営業所での生活。最初の仕事は工場の外郭工事。そして私の仕事は、駐車場の舗装士のセメント安定処理から始まって路盤まで作ってきあり舗装、という時になっている現場。そんな調子で私の現場生活は、農地改良工事、セメントコンクリート舗装、高速道路の側溝の補修と。どちらかといえばアスファルト舗装は2次のもの。本社に戻される直前にやっとという感じで何本かのアスファルト舗装の工事。

本社に戻ってから、技術部・技術開発課に配属され、これもあまりアスファルトを直接は用いず、どちらかというと機械を含むもので開発。

そんなこんなで過ごしている時、突然上司が帰社するなり言、「アスファルト舗装の開発時間を早める機械を造ろう」。アスファルト舗装の強制冷却工法につい
私のスライドアルバム

目から鱗が落ちるということは人生の中でもそれほど多くあることではない。故松島修さんのスライドアルバムを見せていただいたが、その少ない機会の一つであった。松島さんは海の離岸地がそご専門で、建設省の海岸課長から、土木研究所の防潮支所長をされ
た。当時は企画課にいた関係で専門分野の違いをこうして、親しくお付き合いをいただいた。たまたま見せ
ていただいた、支所長室の中のキャビネット一枚に
入ったスライド群は圧巻であった。若いときから出張
で全国の海岸を見て週られる度に、克明にスライドを
撮り、マネを整理しておられた。次の機会に同じ海岸
を見られる時には以前に撮ったスライドを事前に見て
行かれた。この海岸のここには5年前に松の木があっ
たでしょう。どうなったのですか？という質問に役所
の方は異動で人が変わっていて答えられない。地元の
村長さんが答えるのが“どうしてそんなことを知っ
ておられるのですか”と逆に不思議そうに質問された
そうである。スライドを見せていた時、土崎に
既に20年近くないが、これまでどうしてこのような
ことをやらなかったかが悔やまれた。

それまでは、写真といえば外国に行ったときに撮る
くらいなもので特に興味がなかった。しかしこれらく
ば、立場上いろいろ面白い調査技術や調査の損壊現
象に立ち会うためだと思ったから、もしそれらをスライド
アルバムにしておけば、かなり貴重な資料、財産とで
も使えるものとなったに違いない。20数年前に新島バ
イパスのアスファルト舗装にひびわれが入ったという
ので、竹下参さんを見に行つたことがあったが、今
から思うと“わだち割れ”の走りであったような気が
する。しかかもや証拠は何もない。貴重な経験をわ
ざと捨てていたようなものである。それも城から鱗
が落ちた以上、残りの人生で少しでも納得のいく、自
分なりのスライドアルバムを作って見ようと考えた。

以来15年も前である、私のスライドアルバムは約800枚
を数えるまでになり、年々500枚以上が増えていく。写
真の方は、自分のイメージのものとかにかぶってお
ればよい、という主義で通っている。以前はいわゆる
パチコミカメラで撮っていたが、最近は中高年の人
たちがいわれるAFカメラを愛用している。100キロ
以上の高速で走る車から1/1000秒以上でわりと鮮明
な道路の写真が撮れることや、マクロレンズで路面の
抜が容易になったことなど、素人には有り難い世の
中になったものである。

数多くのスライドの中にはいろいろなものか含まれ
ているのだが、調査の写真として人前に出せるものは1
割にも満たない。調査の写真といっても、材料から、
試験、施工、破損、補修などいろいろな分野がある。
アメリカのポルトランドセメント協会（PCA）が発行
しているスライドアルバムは、それぞれの全ての分野に
わっているが、個人の力では到底そこまではできな
い。私の場合には主に破損形態を中心にしている。今
でも眼があれば、目星をつけていた前所の破損した
調査の写真を撮りに出かける。表面からの損傷の状況
を撮ったものが多く、その原因までも分かるものが少
ないのは残念であるが、しかし10数年も調査の破損状
況を撮り続けたら、それなりに一つのストーリーが出
き上がってくる。破損の形態としての分類には役立つ
データが含まれているものと確信している。

中には多分他の人にはない、数工夫の私の宝という
ようなスライドもある。65年前に施工された舗装、D
クラックなど、現在は主としてわだち割れに興味が集
中している。いささか先入観に捕らわれ過ぎかもしれない
と反省しているが、その時には自分の興味のある
ものが主になるのは止むを得ない。アスファルト混
合物の典型的な価値、鋼板舗装のひびわれ状況など、
以前は多くのジャッチャンスのあったものが、
スライドを撮り着けてからはなかなかチャンスに巡り
合わないというような場合もある。また昨年オラン
ダで見たアメリカの透水性舗装など、知識の不足か
ら詳細に撮ることをしなかった。折角のジャッチャン
スを逃した苦い話の方が多い。

要するに調査はまだ経験による部分が多く、技術の
結論である破損現象を子細に観察記録することが、私
はPMSの手始めと考えている。派手ではないが、有用
である、と信じてスライドを撮ってきた。それが直
接役に立つかどうかは別としても、若い研究者の方々に、
物の見方一つを示すものとして受け取っていただけ
れば幸いである。
一技術者と品質管理

出合い

舗装との出会いは、谷藤正三先生の紹介で建設省土木研究所道路研究室の井上静三さんをお尋ねした時である。それは“歴史的による砂利道の安定処理”の実験のお手伝をし、井上の指導のもとに卒業論文を書くためである。昭和30年5月であった。その翌年、松野三朗さんが同研究室に着任され、同テーマを担当されることになった松野さんの指導をうけることになり、舗装から離れられなくなった。当時の同研究室には、岩間浩滋、田中淳七郎さんなど後の舗装界をリードした鉄骨たちが在席されており、全く幸運な場所での舗装との出会いであった。

創設

谷藤さんから日本道路㈱で研究所をつくる。井上君が行くが、君も手伝ってはどうかという誘いがあったのは、昭和32年の夏であった。日本道路㈱の技術研究所が発足したのは、昭和33年7月であった。職員は井上所長以下11名で、その中5名は土木研究所から井上所長と一緒に移った職員であった。

昭和33年は請負方式による舗装工事が定着し、施工管理業者も行う体制が整いつつあった時期であった。

調査と品質管理

発足時の時代背景もあり、創設時から工事のための事前調査と品質管理のための試験で忙しい日々が続き、小さいが活気に満ちた研究室であった。現場の要請により土質調査、配合設計などをこなしていくうちに現場にも品質管理の意味が徐々に何であるか理解されるようになった。このような経緯から生まれたのが、後にアスファルト舗装要綱に採用されたアスファルト混合物の骨材配合比決定法であり、ソックスレー抽出法であった。骨材配合比決定法は、第一線の工事職員からの強い要請で開発された技術であった。

現場対応の試験業務の合間をぬって、Foamed Asphaltによる砂利道路の安定処理の研究がなされた。

土研での歴史的による安定処理の流れの研究課題であった。条件さえ整えば関東道路の安定処理も可能となった。この技術は後に拡がりをみせ、アスファルト舗装要綱にも採用され、現在も当社の得意とする技術の一つになっている。名神高速道路の工事が始まった。それまでに修得した品質管理技術の蓄大成を目指して所長と一部の職員を残し、大部分の職員が施工管理部隊としてその現場に乗り込んだ。現場には、土研で御指導を仰いだ田中さんのが中心的な存在として活躍されていた。この現場ではセメント安定処理のセメント量管理の合理化をめざして、滴定法によるセメントの定量法を提案した。高橋敏五郎さん、田中さんの指導を仰ぎ、この定量化をセメント量の管理を行うことが許され、管理の合理化を進めることができた。この試験法は後にセメントコンクリート舗装要綱に採用され、全国的に普及した。以上は、私が国舗装工事に品質管理が導入され、定着するまでの舗装業者の一技術者の対応の流れに絞って紙幅をしきたが、いずれの場合でも実戦で感じた不便さ、非合理性の解消のための行動であった。

これら

現在の品質管理体制は、昭和30年代に形成され、舗装をとりまく環境、舗装工事の形態も変わったことから、現在の品質管理体制では実状を反映させなくなったりつつある。これを解決するには昭和30年代がそうであったように技術者自身が現場に身を置き正直な生データを得ることから始めなくてはならない。機上で解決の鍵をつかむことは困難であろう。

最近将来、舗装工事にも情報化施設が導入されるであろう。それまでに、我々はどんな準備が必要であるかを早急に考える必要がある。舗装業者にとっては、新素材、新工法の開発にも増して、品質保証を確実にするための品質管理の研究は重要であると思っている。舗装工事の自動化さらに情報化施設への円滑な移行のため準備の一端を担うことができれば幸いと思っている。

Vol. 33 No. 166 (1991年)
舗装技術ひとすじ

キャッチボールの球
これまでをぶりかえるとき、思い出すことがある。入社2年目の春、当時週っていた関西地区の現場から呼び戻されて、今度、所属の本社と研究所を行ったり来たりさせられた。今度は技術開発（当時こんな言葉はなかった）のための試験と研究を、“やれ”という本社と“出来ない”“やっても無意味だ”という研究室の間であったかもキャッチボールのボールのように往復した。勿論経験豊富の新人には自分の意志など通しみようもなかった。そんな中で直属上司であった中島業務課長（現日建建設新聞社）には、「やるのはお前だ、研究所の意見は足踏みしておいてことだと思って聞け」「むしろ思いつくを大事にして、どんどん進める」と励まされた。その言葉は何よりストレス解消になったし、又その後の私の道しりをキープすることにもなったと思われる。「思いつきたいなこだわり」と、調整研究等舗装技術はさらに、この分野に関わっていくことになったのも時のことがきっかけになっているといえよう。

選ばれし我我日建名神特工隊
キャッチボール時代を1年程過ごして、昭和37年から本格的に始まった名神高速道路京都－高槻間舗装工事（略称P工区）に従事した。本邦初のハイウェイを建設することで心躍った。当時何かについて仲間達と現場事務所の歌（当時事務主任西村一男氏作詞作曲）を歌っていた。

一、東は伏見　西は高槻
　天王山麓　淀の河原
　夢の道路　完成に
　選ばれし我　日建名神特工隊（特殊工事部隊）

二、遠く妻子と　別れ来て
　朝に夕べに　星を頂き
　夢見る道は　高速道路
　選ばれし我　日建名神特工隊

独身の我々は、妻子のところを彼女とよかかえて声を張りあげたものである。この頃は、雨が降ると朝から仕事は休みとなかったが、トタン板に落ちる雨音を思い出して今でも雨の朝は仲々起き上れない。そして仕事の方（試験室担当）でもよくやった、つまり思いついた事を進める」を大いに実践した。この時の成果の一つは、共通仕様書で一律に規定されていたアスファルト合材の混合温度を変えて貫いたことである。アスファルトの粘度－温度関係を示唆してくれたのは当時シェル石油㈱アスファルト部長であったC・D・ハリス氏（現当社海外技術顧問）であったが、これをヒントに悩まされ続けていた混合物の剥離現象の問題を解決した。

研究室の時代のこと
名神高速工事の二つ目の現場（関ヶ原、P工区）従事の途中から技術研究所に転属となった。かつてのキャッチボールのボールを今度は仲間として迎えてくれた。先輩や後輩に恵まれ、その後本社技術部へ移るまでの9年間何をも思いつくままに多くの試験や調整研究をやった。現場の経験を持って、舗装技術がわかりかけたときなのでよく勉強した。暫くして結婚したが、仲間達と家に帰って時から始めるか（勿論勉強を）ということを競り合ったりしたものである。トルコ風呂式剥離試験をはじめ多くの独自的（？）の試験法も考案したが、何よりも名神高速道路の道詰験車等、首都高速道路現況調査等、我が国で最初の舗装調査を手がけたことが自慢でもあり、且、現場と理学を対比することが出来たことで何よりの勉強になった。

これからに向けて
若い日の時間的なゆとり、自由な立場の中で、進取の気に富んだ師の薰陶をうけて、小さな思いつきを更に現実的に組立てていくことが今日の自分の身分の基礎にもなっていると思う。厳しい時代に向けて、これからの若い人にも自分の職業（キャリア）は自ら設計していくことが益々重要になっていくだろう。

注1）忘れられぬこと、「思いつきたい」とのあれこれ、道路建設、1989.4
注2）田中淳三郎、名神高速道路のアスファルト舗装について、創刊アスファルトNo.6、1963.11
注3）関西三郎ほか、マーシャル試験によるアスコン合材の水浸安定度に関する実験、道路建設、1963.6
注4）山之口浩、アスコン合材の耐水性試験の検討、第9回日本道路学会論文集、昭44。
注5）金谷重亮ほか、名神高速道路舗装調査1(122)舗装Vol.3。Na.4,7,8、1968。
注6）西野祐也ほか、高架橋の舗装現況調査と補修の考え方、道路、1971.8

山之口　浩
やまのくち　ひろし
日本舗装技術部技術士
（建設部門）昭和34年慶應
大学工学部土木工学科卒
勤務先：〒104 東京都中央
区高円寺1-19-11。
03-3563-8733
特集：舗装技術に関する雑感・民間における舗装の研究活動

吉兼 亨

よしかね とおる
大有建設㈱有機合成工場

研究室長 藤原(重建管理) 塩見29年名古屋工業大学(現) 土木工学科

学士 新南 付 54名古屋市中川区大草通6-12

☎052-653-4665

舗装の再生に首を突込むようになった契機は、1971年(昭和46年)にカリフュルニア州サンフェルナンドで起きた地震で被害を受けたハイウェイのジャンクションの復旧工事を見たことである。現場近くは丘陵地帯で人家も多く、廃棄物の捨場の確保も、緑化などの環境保全対策も施されないので、谷間が広大な地域に点在していて、まず捨てることに誰もが疑いを抱かない状況下にありながら、解解したコンクリート構造物や、舗装の廃棄物を、現場プラントで破砕し、再生舗装材リーンコンクリートの骨材として舗装の復旧工事に用いていったことに大きな衝撃を受けた。大きなジャンクション近くの直下型地震であったため、構造物もとどより舗装も大きな被害を受けたもので、廃棄物の量も数万トンにも達していた。ともかくも、資源、環境の面で何の困らないところなので、このような再生が行われていることに心奪われた。何かというと要領だ、指針だ、標準仕様だという思想とは別の世界がそこにあった。これこそ自然に調和した建設工事であろうと痛感し再生への道を歩むこととなった。

その直後、第1次オイルショックに見舞われた時にはサンフェルナンドのショックが再び激震のように襲ってきた。それを機にアスファルトプラントの省エネ化を図るべく、再び米国を訪れ、そこドライヤドライミキシング方式により、省エネ、省資源混合物や再生アスファルト混合物が用いられており、その対応の速さに目をぱっとするものがあった。省エネ、省資源、再生工法の活用の1例を挙げると、最大粒径2mm 0.075g通過分25％位の砂質土に、5mm程度の豆砂利をわずか20％程加えたのみでアスファルト混合物が作られていた。混合温度は120℃程度、水分を1％程度残しているのがミソのことで、乾式サイロののみで粉じん問題もなく、黒らとした混合物で締め固め性も良かったのを憶えている。これこそローカルマテリアルの活用の良い例と云えよう。

勿論、今のところわが国ではこのような混合物を作るのは依拠性はあまりなく、それに比べれば全く比較にならない程よい材料が容易に入手できるので、舗装材料についてもまたこれをおおむね幸運な国である。しかし、わが国でも骨材資源の枯渇は単なる問題としてはきたっているので、未利用資源の活用や、再生利用の技術の開発はもとより、それらが利用され易い環境作りも考えて行かねばならないことと思う。

話が少し外れたが、ドラミケイキングの面自仕に恵まれ、省エネと再生を目的に昭和48年頃からミニュプラントを建てて実験を始め、関連技術として連続式のアスファルトプラントとしては初の自動連続重量制御システムの開発を図るとともに、定置式の連続プラントには不可欠のホットストレージサイロおよびにおける劣化防止技術も開発し、国内はもとより海外特許まで得た。ドラミキシングプラントで新材の混合も行う車分けだったが、ドライヤ内でのアスファルトの劣化と、混合物の残留水分に対する質問をやや受けた。打設の段階でも、計量及び粒度管理と併せてこの点は重視して開発し混合直後の試験でも、パートプラントに比して何ら遜色がないところか、計画内の低水準はむしろ小さいことを確認していたが、ドライヤ内での混合状態、水分、計画内の変化が知りたく、実プラントの製造中にドライヤとベーカーを停止し、消泡水を身を固めた研究員数名がドライヤの中に飛び込みサブプルを密カサに入れて持ち出してくる離れ業は、今後もそのデータを説明する度にその時の苦労が思い知られる。

その後、ドラミケイキングプラントの粒度管理用として設備していた大型のコールドスクリーンに代わる、自動粒度管理装置を開発設置することにより、計量及び温度管理までを含めた、アスファルトプラントの全自動配合管理システムを完成した。この間15年に亘るが、加熱蒸気を使用した加熱アスファルト貯蔵装置に第一号、更に自動粒度管理装置にも再び建設技術評価制度による大臣評価を得たことは研究開発に携わった一同の大きな励みともなっている。

Vol. 33 No. 166 (1991年)
鋪装文献との戦い

吉村 啓之

早めので、舗装業界に足を踏み入れて11年が経過した。いつも前だけを見つくることを心がけているのだが、この紙面をお借りして、ちょっとだけ後ろを振り向いてみることにする。

昭和54年に入社することと同時に、技術研究所に配属され、舗装との格闘が始まった。そのところ、当時の所長から「広く深く学べ、何にでも首をつぶし、手を汚せ、すべてのことをマスターできるようにせよ」というアドバイスをいただいた。所長の言葉には経験からくる重みを感じさせる、思わずなす状態をてしまった記憶がある。

入社2年後にこの言葉に近いことを実践することになるとは夢にも思わなかった。私が次の課題に与えられた。舗装関係の雑誌、論文集のインデックス作りをやれというものだが、自分の業務以外の空いた時間にやるという条件がついているのである。あまりの無理難題で面食ったが、取りあえずやってみることにした。作業の内容は、論文にインデックスをつけ、インデックスごとに分類された台帳に論文名などを記入するというものである。すなわち、あるテーマの文献を探すときはインデックスのリストから検索するインデックスを選び、そのインデックスに相当する台帳のページを見つける、文献をもれなくリストアップできるというわけである。最初は論文のタイトルから判断してインデックスをつけばよいと簡単に考えていたが、タイトルが本文の内容を的確に表わしているとは限りず、中にはタイトルから中身を全く類似できない論文があることに気づき、目の前が真っ暗になった。

結局、論文全体を読まなければならないこととなった。しかし、舗装に関する知識の欠如している者が舗装のプロの書いた論文を読んで理解できるはずがない。そこで、わからないところは先輩、上司に聞いて疑問点を解消して勉強を続けていく、おおざっぱな知識を吸収しながら、インデックス作りに精を出していた。研究所には過去に先輩が作った台帳があったので、私はそれを引き継いだことになるが、ある程度の作業が進めと、余裕が出てきたため、すでにインデックスがつけられた論文まで手を延ばして再分類してしまった。

この作業は約3年程続き、昭和35年前後から昭和59年までに行われた舗装に関する文献を一通り読むことができた。これは私にとって大きな財産になった。その間、研究業務の一環として、いろいろな試験も汗たらして体得し、期間は短かったが、現場での実務も経験させていただいた。経験していないところを文献による知識でカバーすることによって、所長のいいれた幅広く、片寄りのない舗装の知識を一応得たので、はかないが自分なりに評価している。

しかし、このところ台帳に記入していく方式では、キーワードの修正、細分化がむずかしいなどの問題点が目につきはじめ、パソコンを利用したデータベースで検索することを検討し、実行に移した。しかし、これも与えられた業務以外の時間を見つけて行うという制約がついたため、なかなかはかどらない。しかも、研究所以の本業の方が忙しくなってきたため、空いた時間も少ししかとれず、いまだに完成していない。作業は現在も引き続き行っており、すでにデータの入力だけは若い研究者に頼んでいるが、キーワードの設定は、まだ私が行っている。だれもが使える検索システムの開発をめざしているが、一人で作業を進めていると、私だけのデータベースになってしまうので、それを回避する方法を模索しているつもりである。

最近になって、アスファルト協会の舗装技術研究グループで海外文献のデータベースの開発が行われた。このデータベースのキーワードは体系的につかわれているので、取り入れたいと考えているのだが、慣れ親しんだキーワードを捨てるのは大きな決断が必要で、今まで使ってきた他の所員にも迷惑をかけることになる、どうしたらよいか悩んでいる。また、現在のシステムではタイトルなどの収録データをディスプレイに表示し、プリントに印字するだけなので、本文を全部光ディスクに収めて、瞬時に必要なページを検索できるシステムの構築をはたまっているところである。
かつて外国の調査団に「信じられないくらいにひどい」と言われたわが国の道路も、現在ではその延長は110万kmにも及ぶ、全道建設の70%近くを受け持っている都道府県道路以上の道路はその過半に舗装が施されるに至っている。未だに整備、舗装が行われていない道路の改良と併せて、これらの社会基盤を有効利用するための確立が急務であることは論を待たない。世界的に見ても、FWD（ Falling Weight Deflectometer）による既設舗装の支持力の評価方法およびこれを利用した維持修繕方法の確立や、既設舗装の機能的な評価方法およびこれに基づいたPMS（Pavement Management Systems）などの管理、運用面への関心が高まっている。

当アスファルト舗装技術研究グループでは、このような背景をふまえて日本道路篤の藤田さんをリーダーとする班が舗装の維持修繕を主な研究テーマとしており、舗装のオーバーレイ設計方法について研究を重ねてきた。その成果がまとまったので、今回ここに報告をしたばら運びとなった。主な各国のオーバーレイ設計方法を詳細に検討して紹介していただくと同時に、具体的な例題を用いて詳しいフローと、各国の設計方法を比較した結果をまとめさせていただいた。内容が豊富で作業量も膨大なため、6人の中メンバーが分散して執筆をした。おかげで少し新鮮味がなくなっ残念である」と謙遜されているが、たいへん立派な価値の高い資料だと思う。

新年を迎えた、研究グループの活動も発足以来2年半が経過した。やますると中小企業を見かねないところであるが、全メンバーともますます志気盛んで、立派な研究成果が次々とまとめていく。その活力は驚くばかりである。これほど活動的な舗装研究グループの存在は一層貴重であると思われる。発足当初はお初対面であるせいあっても何かよろこばしさが感じられたものであるが、紅一点女性メンバーも加わり、研究活動のあとの寄り道もなくわたって新たなよう、近ごろはとてもお互いにとても良い雰囲気で打ち解け、結局はタイさんのことである。

今年もよろしくお願い致します。

（京野賢治）

アスファルト舗装技術研究グループ名簿

* 姫 野 賢 治 北海道大学工学部土木工学科
 石 井 広 明 世紀東急工業技術研究所
 福 田 秀 倫 日本道路篤技術部技術第二課
 伊 藤 邦 彦 大成道路篤技術研究所開発研究室
 伊 藤 達 也 日歴工業技術研究所
 梅 野 修 一 運輸省港湾技術研究所港路研究室
 横 戸 靖 楊 日本道路篤技術部技術第一課
 岡 郷 博 国 世紀東急工業技術部技術開発課
 笠 原 彰 彦 日本道路篤技術研究所第二研究室
 金 井 利 浩 鹿島道路篤技術研究所
 神 谷 恵 三 日本道路篤技術部試験舗装試験室
 鬼 野 良 一 常磐工業技術研究所
 久 下 晴 郎 日本道路篤技術本部技術研究所
 小 笠 幸 雄 大成道路篤技術部技術課
 小 林 孝 行 昭和石油篤中央研究所
 佐々木 瑠 建設省土木研究所地質化学部化学研究室
 鈴 木 秀 輔 大成道路篤技術研究所開発研究室

**グループ長
竹 井 利 公 熊谷道路篤技術研究所
田 中 良 作 鹿島道路篤技術部
田 中 基 栄 東京都建設局道路管理部保全課

****谷 口 豊 明 大成道路篤技術研究所施工研究室
富 田 弘 塁 日本道路篤技術部企画課
野 村 健一郎 大成道路篤技術研究所開発研究室
野 村 明 日歴化学工業技術研究所
八 谷 好 高 運輸省港港技術研究所港路研究室

**藤 田 仁 日本道路篤技術本部技術部調査課
増 山 幸 衡 世紀東急工業技術部技術開発課

** 落 沢 輝 雄 鹿島道路篤技術センターアドバイザーエンジニア

** 峰 岸 通 一 東京都土木技術研究所舗装研究室
村 山 雅 人 東京道路イエナ技術研究所
湯 川 ひとみ 鹿島道路篤技術研究所
横 山 時 昭和石油篤アスファルト研究所

** 吉 村 啓 之 前田道路篤技術研究所第一研究室

Vol. 33 No. 166 (1991 年) 35
各国のオーバーレイ設計法

藤田 仁*小林 孝行**増山 幸雄***
泉 秀俊****富田 弘樹*****吉村 啓之******

1. はじめに

日本における道路の整備水準は欧米の諸外国に比べ未だ低いレベルにあり、今後さらに社会資本ストックの増加が望まれている。このような背景の下で昭和62年には14000kmの高規格幹線道路網計画が打ち出されるなど、今後かなりのハイペースで道路の新設が見込まれている。一方、このような状況の中で、これまでに整備されきた舗装の中には寿命期間を経過しつつあるもの、あるいは寿命期間の尽きたと判断されるものも増加してきており、これらを効率的に維持・修繕していくことが大きな課題となっている。

アスファルト舗装技術研究グループの中で当班は、この維持・修繕を担当し、活動を続けている。その最初のテーマとして各国のオーバーレイ設計法を取上げ調査を行った。オーバーレイ工法は維持修繕工法の中で、支持力不足を補い供用年数を増す、あるいは路面性状を改良し供用性を増すという点で各国においても代表的な修繕工法の一つとなっている。本文はあわせて6つの国あるいは機関のオーバーレイ設計法の概要を述べるとともに若干の仮定を設けて、各設計法によるオーバーレイ厚の比較検討を試みた結果を報告するものである。

2. 各国・機関のオーバーレイ設計法の概要

今回、調査を行ったオーバーレイ設計法は以下のとおりである。

① AI
② AASHTO
③ カリフォルニア
④ カナダ
⑤ イギリス

⑥ シェル研究所

以下にこれらの設計法の概要を設計法ごとに述べる。なお、今回調査の対象としたのはアスファルトコンクリート上のアスファルトコンクリートによるオーバーレイのみである。

2.1 米国アシフタル協会（AI）のオーバーレイ設計法

2.1.1 概要

AIのオーバーレイ設計法には、たわみによる方法と有効舗装厚による方法の2通りの方法がある。どちらの設計法を採用するかは、技術者の経験と測定装置の有無による。なお、AIのオーバーレイの設計法では、乗車地の改変等を目的とした薄いオーバーレイは対象外となっており、舗装の構造強化を目的とした厚さ25mm以上のオーバーレイを対象としている。

2.1.2 たわみによる方法

この設計法は、

1）与えられた舗装材料のもとで、たわみが大きくならないほど舗装の寿命は短くなる。
2）許容たわみは、オーバーレイ後に通過することが予想される交通量によって決まる。
3）オーバーレイはたわみを減少させ、また十分な厚さがあればたわみは許容レベルまで減少させることができる。

という考え方だが基本となっており、許容たわみと交通量の関係及びオーバーレイ厚とたわみの減少率の関係からオーバーレイ厚を求めている。

たわみによる設計法のフローを図-1に示す。

2.1.2.1 既設舗装の評価

既存舗装の評価を行うにあたり、事前に目視調査等を行い、構造評価をすべき区間を設定する。構造評価には、

*ふじた ひとし 日本道路舗装技術部調査課
***ますやま ゆうき 日本産業技術総合開発機構
****とみた ひろき 日本舗装研究所専任研究員

**こばやし たかゆき 昭和シェル石油株式会社中央研究所
*****いすみ ひでとし 日本舗装研究所技術第二課
******ようむら ひろゆき 前田道路舗装研究所
図-1 たわみによる方法のフロー

ベンケルマンヒームによる復元たわみ法を採用している。測定時の荷重は8.2tで、車輪の通過部を最低10点、または1km毎12点測定する。測定した復元たわみに、温度補正と季節補正を施すことにより、復元たわみの代表値（RRD）を決定する。

2.1.2.2 交通量の解析
交通荷重は、8.2t単軸荷重通過数（EAL）に換算する。設計EALを決定するには、車両数、トラック数及び表-1に示す成長係数が必要となる。

2.1.2.3 舗装寿命の推定
測定した区間の道路がオーバーレイを必要とするまでの時間を推定は以下の方法で行なう。
1）図-2に示す設計用復元たわみとEALの関係図を利用して、EAL残存値（EALr）を求める。

図-2 設計用復元たわみとEALの関係図

2）測定区間の当該年度における8.2t単軸通過数（EALd）を求め、EALrをEALdで除して成長率を求めめる。
3）交通成長率を百分率で推定する。
4）表-1の成長係数に対応する欄から設計寿命を求めるが、この値がオーバーレイを必要とする年数の推定値となる。
（計算例）
RRD=1.08mm（0.042インチ）
当該年度のEALの合計値（EALd）=68,200
交通成長率=4％
すると図-2からEALr=500,000

表-1 成長係数

<table>
<thead>
<tr>
<th>設計期間</th>
<th>年間の成長率(r)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>増加なし</td>
</tr>
<tr>
<td>1</td>
<td>1.00</td>
</tr>
<tr>
<td>2</td>
<td>2.00</td>
</tr>
<tr>
<td>3</td>
<td>3.00</td>
</tr>
<tr>
<td>4</td>
<td>4.00</td>
</tr>
<tr>
<td>5</td>
<td>5.00</td>
</tr>
<tr>
<td>6</td>
<td>6.00</td>
</tr>
<tr>
<td>7</td>
<td>7.00</td>
</tr>
<tr>
<td>8</td>
<td>8.00</td>
</tr>
<tr>
<td>9</td>
<td>9.00</td>
</tr>
<tr>
<td>10</td>
<td>10.00</td>
</tr>
<tr>
<td>11</td>
<td>11.00</td>
</tr>
<tr>
<td>12</td>
<td>12.00</td>
</tr>
<tr>
<td>13</td>
<td>13.00</td>
</tr>
<tr>
<td>14</td>
<td>14.00</td>
</tr>
<tr>
<td>15</td>
<td>15.00</td>
</tr>
<tr>
<td>16</td>
<td>16.00</td>
</tr>
<tr>
<td>17</td>
<td>17.00</td>
</tr>
<tr>
<td>18</td>
<td>18.00</td>
</tr>
<tr>
<td>19</td>
<td>19.00</td>
</tr>
<tr>
<td>20</td>
<td>20.00</td>
</tr>
<tr>
<td>21</td>
<td>21.00</td>
</tr>
<tr>
<td>22</td>
<td>22.00</td>
</tr>
<tr>
<td>23</td>
<td>23.00</td>
</tr>
<tr>
<td>24</td>
<td>24.00</td>
</tr>
<tr>
<td>25</td>
<td>25.00</td>
</tr>
<tr>
<td>26</td>
<td>26.00</td>
</tr>
<tr>
<td>27</td>
<td>27.00</td>
</tr>
<tr>
<td>28</td>
<td>28.00</td>
</tr>
<tr>
<td>29</td>
<td>29.00</td>
</tr>
<tr>
<td>30</td>
<td>30.00</td>
</tr>
<tr>
<td>31</td>
<td>31.00</td>
</tr>
<tr>
<td>32</td>
<td>32.00</td>
</tr>
<tr>
<td>33</td>
<td>33.00</td>
</tr>
<tr>
<td>34</td>
<td>34.00</td>
</tr>
<tr>
<td>35</td>
<td>35.00</td>
</tr>
</tbody>
</table>

成長係数= \(\frac{(1+r)^n-1}{r} \times \frac{成長率}{100} \) で0ではない。成長率が0の場合は、成長係数 = 設計寿命

Vol. 33 No. 166 (1991年) 37
成長係数＝EALr/EALd＝7.33
表－1よりオーバーレイまでの推定年数は6.5年となる。

2.1.2.4 オーバーレイ厚の決定

オーバーレイ厚を決定するには、RRDを図－3のオーバーレイ厚設計チャート上に、設計EALに対する曲線まで重ねるのを試す。交点から水平線をのばし垂直軸との交点がオーバーレイの必要厚となる。

図－3 たわみ測定値から設計用たわみ量まで舗装のたわみを減少させるのに必要なアスファルト混合物のオーバーレイ厚を求めるチャート

2.1.3 有効舗装厚による方法

有効舗装厚による方法は、舗装がその寿命の一部を用いごとに次第に薄くなるという考え方が基本になっている。有効舗装厚による設計法のフローを図－4に示す。

図－4 有効舗装厚による方法のフロー

2.1.3.1 路床強度の測定

路床の強度を求めるために、各土質ごとにランダムサンプリングにより採取位置を選ぶ。設計に用いる路床強度はMr（レジリエントモジュラス）で表わす。Mrは試験から直接求めるか、またはCBR、R値の試験値から次の関係式によって近似的に求める。

Mr(MPa)=10.3CBR、または=8.0+3.8R

2.1.3.2 既存舗装の有効厚

既存舗装の有効厚Teを求めるには2種類の方法がある。

（1）第1法

この方法は路面性状の評価値に基づいて、舗装構造全体に対して換算係数を用いるとともに、各種の舗装材料をアスファルト混合物の等価厚に換算するための等価係数を用いる方法である。舗装全体に対する換算係数(C)はPSIを利用して図－5から求める。また、各種の舗装材料の等価係数(E)は、表－2から求める。図－5の2本の線は、オーバーレイ後に舗装がどのような供用性を示すかの差を表している。（A線：PSIの変化率がオーバーレイ後に小さくなる場合、B線：PSIの変化率がオーバーレイ前後では同じ場合。）

既存舗装の各層の有効厚Teは、各層の実際の厚さをTとするときTe＝T×C×Eとなる。舗装全体の有効厚Teは全ての層の有効厚の合計である。

図－5 換算係数C

表－2 アスファルト混合物の等価厚に換算するための等価係数

<table>
<thead>
<tr>
<th>材料</th>
<th>等価係数(E)</th>
</tr>
</thead>
<tbody>
<tr>
<td>アスファルト混合物</td>
<td>1.00</td>
</tr>
<tr>
<td>乳剤安定処理舗装タイプI</td>
<td>0.95</td>
</tr>
<tr>
<td>乳剤安定処理舗装タイプII</td>
<td>0.83</td>
</tr>
<tr>
<td>乳剤安定処理舗装タイプIII</td>
<td>0.57</td>
</tr>
</tbody>
</table>

（2）第2法

この方法は舗装の各層に対してアスファルト混合物の等価厚に直接換算するための換算係数を用いるものである。表－3から各層の換算係数Cを求める。各層の有効厚TeはTe=T×Cであり、舗装全体の有効厚Teは全ての層の有効厚の合計である。

2.1.3.3 オーバーレイ厚の計算

オーバーレイ厚の設計では次式を利用する。

Te＝Tn－Te

Te＝オーバーレイの厚さ

Tn＝オーバーレイ後推定交通量（EAL）及び路床強度（Mr）に必要な新しい舗装の厚さ（図－6から求める）

Te＝既存舗装の有効厚

ASPHALT
表-3 既設舗装の各層厚を有効厚さに換算するための係数（アスファルト舗装に関するものを抜粋）

<table>
<thead>
<tr>
<th>材料の分類</th>
<th>材料の性状</th>
<th>换算係数</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>a) すべての場合における自然地盤の路床</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>b) 役務なび化する路床 - 主に耐圧質からなり、シルト粘土を多少含んでもよいがP<10以下</td>
<td></td>
</tr>
<tr>
<td></td>
<td>c) P<10以上のプラスティックな土を石灰安定処理した路床</td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>材料安定処理または下層路盤</td>
<td>0.1-0.2</td>
</tr>
<tr>
<td>III</td>
<td>セメント安定処理または砂質・フライアッシュ安定処理路盤</td>
<td>0.2-0.3</td>
</tr>
<tr>
<td>IV</td>
<td>a) 乳剤またはカットバックアスファルトの表層及び路盤で、かなりのラベリングあるいは骨材分離があるものを、また、わたた部にかなりの変形がみられ、安定度が不足している。</td>
<td>0.3-0.5</td>
</tr>
<tr>
<td></td>
<td>b) コンクリート舗装をオーバーレイ処理に最大短束3.0m以下の下地に碎石しているもの、路盤がある場合は上限値を。スラブ版路床にある場合は下限値を適用する。</td>
<td></td>
</tr>
<tr>
<td></td>
<td>c) セメント安定処理あるいは砂質・フライアッシュ安定処理路盤で、表層上に斜め生えるリフレクションクラックが突出するもの、ひびわれが現れ、緊急な場合は上限値を、ひびわれが広く、ポンピングか不安定性がみられる場合は下限値を適用する。</td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>a) かなりのひびわれ、ひびわれ模様があるアスファルト表層と路盤</td>
<td>0.5-0.7</td>
</tr>
<tr>
<td></td>
<td>b) 乳剤またはカットバックアスファルト表層及び路盤で、細いひびわれがあり、ラベリングか骨材の分離がみられ、わたた部に少変形があるが安定しているもの。</td>
<td></td>
</tr>
<tr>
<td>VI</td>
<td>a) アスファルト舗装及び路盤で細いひびわれが多少あり、断続するひびわれ模様があり、わたた部にわずかに変形があるが、安定しているもの。</td>
<td>0.7-0.9</td>
</tr>
<tr>
<td></td>
<td>b) 乳剤またはカットバックアスファルト表層及び路盤で安定しており、ひびわれがほとんど認められず、ブリッジがない、わたた部にほとんど変形がないもの。</td>
<td></td>
</tr>
<tr>
<td>VII</td>
<td>a) アスファルト混合物でひびわれは概ね認められず、わたた部にほとんど変形がないもの。</td>
<td>0.9-1.0</td>
</tr>
<tr>
<td></td>
<td>b) コンクリート舗装で、アスファルト舗装の下にあり、安定してポンピングがなく、リフレクションクラックがほとんどないもの。</td>
<td></td>
</tr>
</tbody>
</table>

図-6 フルデブス・アスファルト混合物設計チャート

2.2 AASHTOの設計法
2.2.1 概要
AASHTOの設計法は、AASHO道路試験の結果に基づいた設計法で、その実施以降得られた経験を取り入れて1972年に「舗装構造設計に対するAASHTO中間指針」として発行され、その後1981年には剛性舗装の部分が、1986年には次点の役割が修正され現在に至っている。①土の支持係数とレジリエント係数で示している。②各層の材料に対し層係数を、CBRやR値ともに、レジリエント係数でも示している。③環境条件を考慮し、含水率と温度に関する環境係数を導入している。④信頼性（舗装の設計寿命期間にその機能が足に果たされる確率）の概念を導入している。⑤ステージコンストラクション（計画的な改良）の考えを導入している。

2.2.2 オーバーレイの設計における基本的な考え
オーバーレイによる修繕方法についての基本的な考えは次の通りである。
1.オーバーレイの一般論は全ての舗装構造のオーバーレイに適用される。為の、剛性舗装とたわみ性舗装を構造的耐荷力の式（1）で示しているが、剛性舗装ではSC=有効版厚、たわみ性舗装ではSC=構造指

Vol. 33 No. 166 (1991年)
数として使用される。

\[SC_{OL} = SC_y - F_{RL} (SC_{eff})^2 \]

\[SC_y \] は既設の道路の状態でオーバーレイ後の交通を供用するのに必要な全構造的耐荷力。

\[SC_{eff} \] はオーバーレイ直前の既設舗装の有効構造的耐荷力で、この時点での破壊状況を反映したもの。

②この方法論は、図-7に示されるような供用性指数と交通履歴の考えに基づいている。③ライフサイクルコストの概念を導入する場合に有効である。

図-8 オーバーレイ厚決定の手順

（1）解析で対象とする単位区間の設定
修繕区間を、均一な舗装断面、路床支持力、建設の履歴、そして舗装の状態が統計的ではほぼ均質と見なせる区間に分割し、それを一つの解析区間とする。

（2）交通解析
このステップの目的は、舗装が最初に交通に供用された時点でオーバーレイ後に再修繕が必要とされる時点まで（オーバーレイ設計時に、何年後に再びオーバーレイを行うことを想定するか）の、8.2ton等価単軸荷重下での累積損失数を予想することである。

（3）材料と環境の検討
修繕における各層材料の設計に用いられる値は弹性係数であり、次の3つに分類される。1）既設舗装における各層の弾性係数。2）既設舗装における路床の弾性係数。3）オーバーレイ層の弾性係数（再生材の使用も含む）。

これら3つの材料の弾性係数を求めるために、対象区間における現場での非破壊試験を行なうが、路床土の弾性係数については、コンピュータを用いて、たわみ形状から各層の弾性係数を求める方法、最大たわみ量から補正グラフを用いて直接、弾性係数を求める方法がある。しかし②の方法では、各層の弾性係数を特定できないため、①の方法を用いるのが望ましい。

またこれらの非破壊試験による調査は、環境条件の季節的変化（特に路床）の影響を受けるため、弾性係数
数の季節による変動を考慮して経験的修正を行うわけではないが、それを省くには、舗装が最も厳しい状態にある時に調査を実施すれば良い。

（4）有効な構造的耐荷力の解析

残存寿命の概念から、一般にオーバーレイにおける有効構造的耐荷力は（1）式で示されるが、たわみ性舗装においては、SC=SN_r、n=1.0として考えて良い。従って、オーバーレイの厚さを求める場合には、有効構造的耐荷力ではなく、式（2）の様に示される層構造指数SNO_Lとして計算することができる。

\[SNO_L = SN_r - (F_{RL} \times SNO_{set}) \]

（2）

\[SN_r : \text{オーバーレイ後に再修繕が必要とされる時点までの将来交通、路床条件に対して必要となる舗装の層構造指数で、} \]

（1）～（3）のステップによって得られた値をノグラフに用いることによって求められる。

\[F_{RL} : \text{残存寿命係数} \]

\[SNO_{set} : \text{オーバーレイ直前の既設舗装の有効層構造指数で、非破壊試験を用い、たわみ形状からコンピュータによる解析を行って決定する方法と、同じく非破壊試験を用いて、最大たわみ値を求め、グラフから決定する方法がある。} \]

（5）オーバーレイ後の将来の構造的耐荷力の解析

オーバーレイ終了後、次のオーバーレイを行うと想定した期間までに必要となる舗装の強度について、累積8.2ton等価単軸荷重を供試させた場合と想定し舗装の全構造的耐荷力（層構造指数）を決定する。

（6）残存寿命係数の決定（F_{RL})

残存寿命係数は、オーバーレイ前の既設舗装の残存寿命とオーバーレイした舗装の残存寿命とから、各因子の関係図を用いて求める事ができる。

1）オーバーレイ前の既設舗装の残存寿命（R_a）

オーバーレイ前の既設舗装の残存寿命の推定には、以下の5つの方法が用いられている。

①非破壊試験（NDT）のアプローチ ②交通のアプローチ ③時間のアプローチ ④供用年数指数のアプローチ ⑤状況観察のアプローチ。

これらのアプローチは、理論的には等しいものであるが、各々の値を与えることは稀である。現在の技術ではこの5つの評価方法のどれかが優れているかの提言はできない。しかし、非破壊試験によるたわみ解析を使用した手法が、既設舗装の構造的耐荷力をより定量的に評価する手法であり、従って他の方法よりも通常は重視が置かれている。

非破壊試験のアプローチでは、初期の構造的耐荷力（SCa又はSN_a）がわかりSC_{set}（SN_{set})を使用して、舗装のコンディション係数（C_a）を式（4）から求めることができる。このC_aを図-9に用いることによって、R_aが推定される。

![図-9 舗装のコンディション係数から予測する残存寿命の決定](image)

2）オーバーレイした舗装の残存寿命（R_p）

オーバーレイした舗装の残存寿命を決定するために必要なデータは、オーバーレイ前の既設舗装の残存寿命の推定とほぼ同じ条件となる。従って、そのデータをそのまま使用する事ができる。

3）残存寿命係数の決定

1）、2）のステップで求めたR_a、R_pを用いて図-10から残存寿命係数（F_{RL})の決定を行う。

2.2.4 オーバーレイ厚の求め方

前述の手順によって得られた入力変数を次の（3）

![図-10 既設及びオーバーレイ舗装の残存寿命を関数としての残存寿命係数](image)
式に用いることにより、オーバーレイの所要厚さが決定される。

\[h_{o} = \left(S_{n_{o}} - F_{k} \cdot S_{n_{eff}} \right) / a_{o} \] ... (3)

ここで、オーバーレイに使用する材料の等価換算係数で、例えば密粒度アスファルト混合物の場合は、図-11に示す弾性係数との関係から求められる。

図-11 密粒度アスファルト混合物の層係数を弾性係数（レジリエン数係数）に基づいて推定するためのチャート

2.3 カリフォルニアの設計法

1951年、カリフォルニアでアスコン表層の疲労破壊と舗装の表面たわみ量との関係を把握する目的で、広範囲にわたる数々の舗装道路の舗装と舗装のたわみ量調査が開始された。この調査をもとに、特別な交通条件下での様々な舗装条件に対する最大許容たわみ量の基準が提案され、オーバーレイ設計法の基礎が完成した。一方、疲労破壊と舗装たわみ量との関係を、剪断供体による路面試験機から検討され、荷重のくり返し回数と破壊に至るまでのひずみの変化の関係に基づき、すでに提案されている許容たわみ量の基準が改訂され、任意の交通量に対する許容たわみ量基準を与える現在の設計法の基本が完成した。

このようにして、オーバーレイの設計法は現場データと室内試験データの蓄積から生まれたものであり、1960年オーバーレイが行われるようになって以来、設計法は利用されてきた。しかし、その設計原理は変わることなく受け継がれ、変化する交通状況に対して柔軟に修正されてきている。1970年にHRBに設計法が発表され、更に修正が加えられ1978年カリフォルニアテスト356-Dが確立し現在に至っている。

2.3.3. 設計条件

2.3.3.1 交通指数

交通条件は交通指数TIで表わす。交通指数TIとは、舗装の設計期間中の2,268t換算車荷重の1方向での累積通過数をEWLの関数として、経験的に次式で示される。

\[T = 6.7 \times \left(\frac{EWL}{10^6} \right)^{0.118} \]

通常、交通指数は0.5単位で丸めて示す。

EWLは一般にトラックのみを注目して算出されるが、この場合バスもトラックに含めており、表-4に示すようなEWL定数がトラックの車種別に決められている。このEWL定数に設計初期度の各々の方向のトラック交通量と交通の年増加率を乗じることによって、車種別の年間一方向のEWLが求められる。

このようにして得た車種別の年間一方向のEWLを全車別について計算し合計すれば設計路線の年間一方向のEWLが求めまる。一般に、設計期間は20年をとることが多く、年増加率は10年間の伸び率が用いられる。

一方向当りで計算されたEWLは車線ごとに分配する

<table>
<thead>
<tr>
<th>車のタイプ</th>
<th>日トラック交通量あたりの年間設計EWL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>県間道路</td>
</tr>
<tr>
<td>2軸トラック</td>
<td>300</td>
</tr>
<tr>
<td>3軸トラック</td>
<td>920</td>
</tr>
<tr>
<td>4軸トラック</td>
<td>1320</td>
</tr>
<tr>
<td>5軸トラック</td>
<td>2800</td>
</tr>
<tr>
<td>6軸トラック</td>
<td>2800</td>
</tr>
</tbody>
</table>

ASPHALT
必要がある。表-5は両方向で車線数が2, 4, 6, 8の場合の交通量車線分配率である。この値は最小値であり、特別な状況では増加させなければならない。

例えば両方向で8車線である場合、内側2車線の設計交通量は0.8EWL、外側2車線では0.2EWLを用いるものである。

表-5 多車線道路の車線分配率

<table>
<thead>
<tr>
<th>両方向の車線数</th>
<th>EWLの車線分配率（％）</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>第1車線</td>
</tr>
<tr>
<td>2</td>
<td>100</td>
</tr>
<tr>
<td>4</td>
<td>100</td>
</tr>
<tr>
<td>6</td>
<td>20</td>
</tr>
<tr>
<td>8</td>
<td>20</td>
</tr>
</tbody>
</table>

第1車線はセンターラインに隣接するもの、あるいは運転者の左側の中央車線をいう。

（2）既設舗装の表面たわみ量の決定
既設舗装の表面たわみ量はWASHO Testに準する方法で、8200kg荷重下でのペンケルマンピーム法を用いたたわみ量で示す。測定はセンターラインに沿って7.6m間隔にとり、連続した3つの測点のうち2つが0WP、1つが1WPで測定する。対象距離を代表するたわみ量は、全測定データの80%がその値を下回り、残りの20%が上回るような値を採用する。表面たわみの測定は、ペンケルマンピームによる測定では効率が悪いため一般にはカリフォルニア式移動たわみ測定機が使用される。1日のうちに約1500〜2000の測点を処理する。

図-12 設計の手順

能力があり、道路は約10kmに相当する。

（3）オーバーレイの適用の検討
既設舗装の表層厚さと交通指数TIから図-13を用いて許容たわみ量を求める。ここで（2）で得た既設舗装の表面たわみ量（80%たわみ量と呼ぶ）と許容たわみ量を比較して表-6に従ってオーバーレイの検討を行なう。

表-6 オーバーレイの適用範囲

<table>
<thead>
<tr>
<th>80%たわみ量許容たわみ量</th>
<th>オーバーレイの必要はないが安全性のために薄いオーバーレイをすることがある。</th>
</tr>
</thead>
<tbody>
<tr>
<td>80%たわみ量許容たわみ量</td>
<td>オーバーレイで補強する</td>
</tr>
</tbody>
</table>

2.3.3 オーバーレイ厚の決定
80%たわみが許容たわみ量より大きい場合にはのみオーバーレイでの補強が必要である。
80%たわみと予測交通量TIとを用いる図-14の設計チャートからオーバーレイ厚を決定する。得られた値は0.5単位で切り上げオーバーレイ厚とする。
一般にはチャートより求まるオーバーレイ厚で十分である。しかし、オーバーレイ後に発生するリフレクション・クラックを防ぐ必要がある場合次のような方法で処理する。

① 未処理の路盤上にある既設アスコン舗装厚の少なくとも半分の厚さをオーバーレイ厚とする。
図-13 許容たわみチャート

図-14 設計チャート

(2) PCC舗装、CTB上のアスコン舗装では最厚0.30ft（9.1cm）を適用する。（これより薄いオーバーレイ厚ではよい乗り心地性は示すが、リフレクショング・クラックを発生する恐れがある。）

上記(1)、(2)は未だ理論的なうらづけはなされてなく、経験的に決められているだけである。

2.4 カナダにおけるオーバーレイの設計

2.4.1 設計方法の概要

カナダにおけるオーバーレイは、1）乗り心地等の供用性の改善、あるいは、2）舗装構造の強化のいずれかに据えて行なわれている。しかし、1）乗り心地等の供用性の改善目的のオーバーレイに関する通達なガイドラインはなく、ほとんどが各ハイウェーの管理局の経験に基づいているため、以下では2）舗装構造の強化についてのみふれることとする。

参考舗装*のベンケルマンビームによる春季の最大たわみ量を求め、これをもとに設計最大たわみ量を決定し、これらより追加粒状路盤厚を求め、換算係数により舗装厚を決定する。
（参考舗装*：環境条件が類似した同じタイプの路床土上に施工された延長300m以上あるアスファルト舗装で、最低3年間を経ており、建設当初の舗装表面を保持している舗装）

オーバーレイは通常一層または二層（一層は30〜40mm）で行なわれるが、過去に補修が行われたような痛みのひどい道路のオーバーレイは、三層あるいは厚めの二層となる。

2.4.2 設計方法

（1）既設舗装の分類

路床土の種類や舗装の状態、舗装厚、交通量等により、どの参考舗装に分類されるかを決め、春季の最大たわみ量を求める。

（2）設計たわみ量

図-15または図-16を用いて、設計交通量（ESAL）に対する春季最大たわみ量を求める。

（3）オーバーレイ厚の決定

1）追加路盤厚

図-17の横軸に（1）で設定したたわみ量をとり、これと（2）で求めた最大たわみ量の曲線との交点の縦軸が追加路盤厚となる。

2）舗装厚の決定

1）で求めた追加路盤厚と表-7に示す換算係数より舗装厚を決定する。

ハイウェーでのオーバーレイのアスコンの最小厚さは次のように決められている。

44
図-15 累積ESALに対する最大たわみ量

図-16 累積ESALに対する最大たわみ量

図-17 既設舗装のたわみ量を設計たわみ量にまで減ずるに必要な追加面層厚

a) 交通量の少ないハイウェーやオーバーレイの設計期間が5年以下でよいハイウェーでは、40mm（1.5 in）
b) 中程度までの交通量のハイウェーでは、75mm（3 in）
c) 主なハイウェーやフリーパスでは、125mm（5 in）

（4）設計例
- 既設舗装の最大たわみ量 \((X + 2 \sigma) = 1.37 \text{mm} (0.054 \text{ in}) \)
- 設計期間15年間のESAL＝2 \times 10^9

と設定する。
まず、図-15より、設計最大たわみ量0.76mm（0.030 in）となる。

次に、図-17の曲線1.37mm（0.054 in）と、0.76mm（0.030 in）の曲線との交点の縦軸より追加面層厚は200mm（8 in）と求められる。

最後に、表-7の換算係数を用いてオーバーレイの舗装厚を決める。例えば、British Columbiaの場合、オーバーレイがアスファルト層だけならば、100mm（4 in）がオーバーレイ厚となる。

2.4.3 設計オーバーレイ厚のチェック
たわみ法によるオーバーレイの設計に対して、設計厚が妥当であるかどうかのチェックを行なう方法がある。

（4）の例について検討してみる。
既設舗装は図-18に示すような構造で、供用後12年経過しておりオーバーレイが必要となっている。設計
表-7 各州における換算係数

<table>
<thead>
<tr>
<th>州</th>
<th>換算係数</th>
</tr>
</thead>
<tbody>
<tr>
<td>British Columbia</td>
<td>1 mmアスファルトコンクリート = 2 mm粒状路盤 (min.)</td>
</tr>
<tr>
<td></td>
<td>1 mmアスファルトコンクリート = 2.5 mm砂質粒状下層路盤</td>
</tr>
<tr>
<td></td>
<td>1 mmアスファルトコンクリート = 2.25 mm切込碎石</td>
</tr>
<tr>
<td></td>
<td>1 mmアスファルトコンクリート = 1.75 mmソイルセメント</td>
</tr>
<tr>
<td></td>
<td>1 mmアスファルトコンクリート = 1.25 mmアスファルト処理粒状路盤</td>
</tr>
<tr>
<td>Saskatchewan</td>
<td>変数として考慮しており、使用していない</td>
</tr>
<tr>
<td>Manitoba</td>
<td>1 mmアスファルトコンクリート = 2 mm粒状路盤</td>
</tr>
<tr>
<td></td>
<td>1 mmアスファルトコンクリート = 1.5 mmサンドアスファルトあるいはソイルセメント</td>
</tr>
<tr>
<td></td>
<td>1 mmアスファルトコンクリート = 2 mm石灰処理</td>
</tr>
<tr>
<td></td>
<td>1 mmアスファルトコンクリート = 2 mm安定処理路盤 (アスファルトまたはセメント)</td>
</tr>
<tr>
<td></td>
<td>1 mmアスファルトコンクリート = 3 mm粒状 (B, C, D) 下層路盤</td>
</tr>
<tr>
<td>Quebec</td>
<td>1 mmフルアスファルトコンクリート = 2.7 mm粒状 'A' 路盤 (蒸気)</td>
</tr>
<tr>
<td></td>
<td>1 mmフルアスファルトコンクリート = 2 mm碎石路盤</td>
</tr>
<tr>
<td></td>
<td>1 mmフルアスファルトコンクリート = 2.5 mm粒状路盤、下層路盤</td>
</tr>
<tr>
<td></td>
<td>1 mmフルアスファルトコンクリート = 3 mm砂下層路盤</td>
</tr>
<tr>
<td></td>
<td>1 mmフルアスファルトコンクリート = 1.25 mmソイルセメント (150mm以下)</td>
</tr>
<tr>
<td></td>
<td>1 mmフルアスファルトコンクリート = 2 mmソイルセメント (150mm以上)</td>
</tr>
<tr>
<td></td>
<td>1 mmフルアスファルトコンクリート = 3.3 mm石灰安定処理</td>
</tr>
<tr>
<td></td>
<td>1 mmフルアスファルトコンクリート = 1.8 mmアスファルト安定処理路盤</td>
</tr>
<tr>
<td></td>
<td>1 mmフルアスファルトコンクリート = 2.5 mm粒状碎石</td>
</tr>
<tr>
<td></td>
<td>1 mmフルアスファルトコンクリート = 2.5 mm粒状砂利</td>
</tr>
<tr>
<td></td>
<td>1 mmフルアスファルトコンクリート = 3 mm砂質粒状材</td>
</tr>
<tr>
<td></td>
<td>1 mmフルアスファルトコンクリート = 2 mm砂石</td>
</tr>
<tr>
<td></td>
<td>1 mmフルアスファルトコンクリート = 2 mmソイルセメント (150mm以上)</td>
</tr>
<tr>
<td></td>
<td>1 mmフルアスファルトコンクリート = 2 mm (あるいはそれ以下) アスファルト安定処理路盤</td>
</tr>
<tr>
<td></td>
<td>1 mmフルアスファルトコンクリート = 3 mm粒状下層路盤</td>
</tr>
</tbody>
</table>

最大たわみ量、設計 ESAL は、2 - 4 と同様に 0.76mm (0.030in), 2 × 10^4 とする。

まず、既設舗装のアスコン厚115mm (4.5 in) と粒状路盤厚215mm (8.5 in) より図-19-21 を用いて供用期間中の予想 ESAL と路床の CBR の関係は表-8 のように

表-8 供用期間中の予想 ESAL と路床の CBR の関係

<table>
<thead>
<tr>
<th>路床の CBR</th>
<th>供用期間中の予想 ESAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5</td>
<td>1.1 × 10^4</td>
</tr>
<tr>
<td>10</td>
<td>1 × 10^4</td>
</tr>
<tr>
<td>20</td>
<td>9 × 10^4</td>
</tr>
</tbody>
</table>

図-18 仮定断面

図-19 サスカチワン州厚さ設計チャート (CBR = 2.5)

図-20 サスカチワン州厚さ設計チャート (CBR = 10)

図-21 サスカチワン州厚さ設計チャート (CBR = 20)
次に、図20の横軸に既設舗装の粒状路盤厚215mm（8 in）をとり、これと設計 ESAL の2×10⁶の曲線の交点より、縦軸の必要舗装厚140mm（5.5in）が求まる。この値と既設舗装のアスコン厚115mm（4.5in）との差、つまり25mm（1 in）が最小オーバーレイ厚となる。

最後に、最大オーバーレイ厚を求める。既設舗装が完全に破壊していて粒状路盤材として機能していたとすると、この舗装構造は330mm（約13in）の粒状路盤材だけである。図20より、設計 ESAL の2×10⁶に対する舗装厚は、115mm（4.5in）となり、これが最大オーバーレイ厚となる。

以上よりオーバーレイ厚の範囲は、25mm（1 in）〜115mm（4.5in）となり、さきに求めた100mm（4.5in）は妥当な値である。

2.5 イギリスのオーバーレイ設計法
2.5.1 概要

イギリスの現在の設計法は、1978年に発表されたTRRL LR833によるもので、1973年のLRS71を改定したものである。設計法は既設舗装のたわみと交通量からオーバーレイ厚さを決定するものです。理論法と経験法で大別すれば、経験法が主に分かれる。設計曲線は各試験舗装上のオーバーレイの施工後のたわみの測定データを解析して得られたもので、路盤の種類ごとにまとめられた設計チャートとして用意されている。また、設計法の特徴として、設計寿命に達する確率0.5と0.9に対する設計チャートが与えられていることがあげられる。

2.5.2 たわみの測定

設計にはペンケルマンビームによるたわみを用いるが、デフレクトグラフを用いてもよい。この場合、デフレクトグラフのたわみは補正図（図22）を用いてペンケルマンビームのたわみに換算しなければならない。TRRLでは、標準たわみを「表層下4cmにおける20℃のたわみ」として定義している。したがって、実測したたわみは路面温度によって異なるため、温度補正する必要がある。たわみの温度補正は用意された補正図（図23）を用いて行うことができる。温度補正図はアスファルト混合物の種類と厚さによって6枚用意されている。

2.5.3 交通量

交通量は無積載時重量が1.5 t以上の貨物、バスの交通量を8.2 t転車両荷数換算として評価する。設計期間中の累積交通量は、設計期間、交通量の増加率、商業車の日交通量（一方向）を基にしたノモグラフ（図24）から求める。

2.5.4 設計たわみ

たわみを測定した既設舗装がクリティカル（critical）な状態であるかどうかは、累積交通量と路盤の種類がわかれば、標準たわみと舗装の寿命の関係図（図25）
によって推定することができる。設計たわみは通常、
測定値の85パーセントタイル値を用いるようになってい
る。

図-24 左側レーンの累積一方向交通量の予測のためのノモグラフ

図-25 標準たわみと舗装の寿命の関係図（天然の結
合力を呈する粒状路盤）

2.5.5 設計チャート

設計チャートは路盤の種類ごとに用意され、各々が
設計寿命に達する確率0.5と0.9に対して作成されてい
る。（図-26）路盤の種類はgranular road base, non-
cementing granular road base, bituminous road
base, cement-bound road baseの4種類である。な
お、オーバーレイの最小厚さは4cmとなっている。ま
た、設計チャートの適用は表層用混合物がロールドア
スファルトに限定されているため、他の混合物を使用
する場合は厚さ係数で補正しなければならない。

オーバーレイ厚の決定方法は、
（1）路盤の種類、確率に適合するチャートを選定す
る。
（2）設計たわみを求める。
（3）累積交通量を推定する。

図-26 非結合粒状路盤材の舗装用のオーバーレイ設
計チャート（標準値）

（4）交通量とたわみに合致する点を設計チャート上に
プロットする。

（5）上記の交点から横軸に対して平行移動して縦軸と
の交点を読み取る。この点が求めるオーバーレイ厚
になる。

2.6 シェル研究所のオーバーレイ設計法①

2.6.1 概 説

SHELLのオーバーレイ設計法は、舗装構造の特性値と
気候そして交通量等の条件から、設計曲線図表を用
いてオーバーレイ厚を決定する設計法である。設計は、
ワークシートに基づいて容易に行うことができる。

設計の対象とする舗装構造は、図-27で示すよう
な3層構造のアスファルト材料であり、ほとんどの舗
装構造はこれに当てはめることができる。この構造に
交通荷重が作用すると、路床表面とアスファルト層下
面に応力が発生する。路床表面に発生する圧縮歪が許
容値を越えると、路床に永久変形が起こる。またアス
ファルト層下面に発生する引っ張り歪が許容値を越え
ると、アスファルト層にひび割れが生じて破壊が進行
する。本設計法はこれらの歪を基準として用い、舗装
に関する条件を基準を満足するようにオーバーレイ厚
を決定していくものである。

2.6.2 設計条件

設計に先立って、舗装構造の特性値と気候そして交
通量等の設計条件の特性化を行う必要がある。

2.6.2.1 舗装の評価

舗装構造は、アスファルト層のアスファルト混合物
特性値（Mix-Code）とアスコン等価強度（h_{Maat}) そ
して路床の弾性係数（E_{k}) の三つの値で特性化する。
また、設計に先立って対象地域の年平均気温（w-
MAAT) も決定する必要がある。

（1）Mix-Code

アスファルト混合物特性値である Mix-code とは、
図−27 鋳装構造

アスファルト混合物の性質で最も重要な混合物の粘性（S）と疲労特性（F）の2つで混合物種類を特性化したものである。Mix-Code は次のように示される。

\[S_1 \rightarrow F_1 \rightarrow \text{pen} \]

ここで、

- \(S_1 \): 密粒上層路盤型の混合物で平均的なスチフネス特性を示すもの。
- \(S_2 \): 開粒度混合物でアスファルト量の比較的少ないもの。
- \(F_1 \): 平均的な上層路盤混合物。
- \(F_2 \): 空隙率が大きい上層路盤混合物。

また、pen は、針入度を表わしており通常 pen50 と pen100 の2種類の等級で分類される。pen50 はストアス40/60などを代表し、pen100 はストアス80/100などを代表するものである。

(2) \(h_{	ext{err}} \) と \(E_s \)

アスコ等価換算厚 \(h_{	ext{err}} \) と路床の弾性係数 \(E_s \) は、FWD（Falling Weight Deflectometer）を用いての調査結果と既設舗装のコアサンプリングの結果から得ることができる。FWD とは、舗装に振動荷重を与えることによって舗装のたわみ値を得る装置であり、外見は図−28で紹介しているとおりである。FWD とコアサンプリングにより得たデータを、BISAR（BITUMEN STRESS ANALYSIS IN ROADS）により解析し、\(h_{	ext{err}} \) と \(E_s \) の値を得ることができる。BISAR とは、多層弾性理論に基づいた舗装構造解析プログラムのことである。

2.6.2.2 気候

対象地域の気候を特性化するために、年平均気温（w-MAAT）が使用される。w-MAAT は、用意されたワ

図−28 FWD

ワークシートとチャートから簡単に読むことがある。

2.6.2.3 交通量

交通量は、標準軸荷重80KNの車両の通過回数である。他の軸荷重の車両を標準軸荷重に換算するには、用意されているチャートが利用できる。また、標準軸荷重の通過回数は、舗装の寿命としても使用される。

2.6.3 オーバーレイの設計

オーバーレイ厚の設計は、設計曲線図表とワークシート Q を使用して容易に行うことができる。ワークシート Q の例は表−9 に示している。設計の手順はワークシートに従っておこない、必要なデータは適切な設計曲線図表を選択し利用することにより得ることができる。設計曲線図表の例は図−29 に示しているが、他の他にも色々な種類の図表が用意されている。

2.6.3.1 設計に用いる変数

設計はワークシート Q に従ってすすめることができる。まず、(1) ～(6) の欄を以下のようにうめる。

ワークシート Q は、表−9 に示している。

(1) 舗装区間 舗装する区間名を記入する。
(2) w-MAAT 年平均気温、w-MAAT を記入する。
(3) Mix-code 既設舗装の Mix-code を記入する。
(4) NA1 供用消滅した寿命を表す。すでに通過した交通量を過去の交通量調査から推定し、標準軸荷重の通過回数を単位として、寿命として記入する。
(5) 設計年数 設計年数を記入する。
表-9 ワークシートQの記入例

オーバーレイの設計（ワークシートQ）

<table>
<thead>
<tr>
<th>設計に用いる変数</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) 鋳造区間</td>
<td></td>
</tr>
<tr>
<td>(2) ワークシートB: w-MAAT ℃</td>
<td>15</td>
</tr>
<tr>
<td>(3) 既設舗装のMix-code</td>
<td>S1-F2-100</td>
</tr>
<tr>
<td>(4) 消費した寿命 : N_{A1}</td>
<td>1.5×10^{6}</td>
</tr>
<tr>
<td>(5) 設計年数</td>
<td>10年</td>
</tr>
<tr>
<td>(6) ワークシートA: 需要な寿命 N_NA2</td>
<td>3×10^{6}</td>
</tr>
</tbody>
</table>

舗装の特性

(7) アスファルト等置換算厚 : h_{eff}	180mm	
(8) 路床の弾性係数 : E_{3}	4×10^{7} N/m²	
(9) 非結合材路盤厚 : h_{2}	200mm	
(10) 新設時の設計寿命 : N_{N}	2×10^{6}	
(11) 残存寿命 : N_{R}	0.5×10^{6}	
(12) オーバーレイ適用判定	10年: yes	20年: yes

路床の重基準に基づくオーバーレイの設計

(13) 設計寿命	N_{N}	3×10^{6}	7×10^{6}
(14) N_{N}に必要なアスファルト厚 : h_{1}	200	230	
(15) オーバーレイ厚 : h_{o}	20	50	

アスファルトの重基準に基づくオーバーレイの設計

(16) アスファルトの重基準に基づいた新設時の設計寿命	N_{N}	2.5×10^{6}	
(17) 残存寿命	N_{R}	10^{6}	
(18) 設計寿命	N_{N}	7.5×10^{6}	1.8×10^{7}
(19) N_{N}に必要なアスファルト厚 : h_{1}	220	250	
(20) オーバーレイ厚	h_{o}	40	70

備考: (10), (11) N_{N}=N_{D1}-N_{A1} | (13), (15) h_{o}=h_{1}-h_{eff} | (12) もしNR=0ならN_{N}=N_{A2} | (14) N_{N2}=N_{A2} | (18) N_{N2}=N_{N1}×N_{A2} |

Mix code S1-F1-100 路盤厚 h_{2} 300mm w-MAAT, ℃ 20

2.6.3.2 舗装の特性

舗装の特性值は、(7)~(12)に次のようにまとめられる。

(7) h_{eff}
既設舗装のアスファルトコンクリート層の等置換算厚を記入する。

(8) E_{3}
路床の弾性係数を記入する。

(9) h_{2}
非結合材路盤厚を記入する。新設設計時のデータ、あるいはコアサンプリングにより決定する。

(10) N_{D1}
新設設計時の設計寿命を表わす。
w-MAAT, Mix CODE, E_{3}の条件にあった設計曲線図表を利用して設計寿命を読み取り記入する。条件にあったチャートがないときは、複数の設計曲線を合成し内挿して条件にあった設計曲線図表を

図-29 設計曲線図表列（EN型）

(6) N=N_{A2} 将来必要な寿命を通過軸数単位で記入する。

50 ASPHALT
(11) N_R 作成して N_{Di} を導出する。
既設舗装の残存寿命を $N_R = N_{Di} - N_{A1}$ により算出し、記入する。

(12) オーバーレイ適用判定
将来必要とされる寿命 (6) と残存寿命 (11) を比較してオーバーレイの適用を検討する。オーバーレイの適用が決定したら以下の方
法にしたがってオーバーレイ厚を設計する。

2.6.3.3 路床の歪基準に基づくオーバーレイの設計
路床の歪基準に基づく設計は、(13) ～ (15) に従って行なう。ただし、既設舗装の設計が路床の歪基準に基づいていない事があるため、本
過程は省略できる。

(13) N_{D2} オーバーレイ後の設計寿命を表わす。オーバーレイ後の設計寿命 N_{D2} と将来必要な寿命 N_{A2} は等しいと
して N_{A2} を記入する。

(14) h_1 オーバーレイ後の設計寿命に必要なアスファルト厚を表わす。W-
MATT, Mix CODE, E_r の条件に
あった設計曲線図表を利用して
N_{D2} に対応する値を読み取り記入す
る。条件にあったチャートがない
とき、複数の設計曲線を合成し
内挿して条件にあった設計曲線図
表を作成して h_1 を導出する。

(15) h_0 オーバーレイの必要な厚さを表わす。h_0 は次式で算出する。
$$h_0 = h_1 - h_{eff}$$

2.6.3.4 アスファルトの歪基準に基づくオーバーレイの設計
既設のアスファルト層の疲労を考慮した設計である。設計に疲労を加味するために、既設舗装の残余寿命比率
$(1 - N_{A1}/N_{D1})$ は設計後の残余寿命比率 (N_{A2}/N_{D2})
と変わらないと仮定を用いている。アスファルト
の歪基準に基づく設計は (17) ～ (21) にしたがって行
なう。

(17) N_{Di} アスファルトの歪基準に基づいた
新設時の設計寿命を表わす。W-
MAAT, Mix CODE, E_r の条件に
あった設計曲線図表を利用して
読

(18) N_R 残存寿命を表わし、次式で算出する。
$$N_R = N_{Di} - N_{A1}$$

(19) N_{D2} オーバーレイ後の設計寿命を表わ
す。残存寿命比率が過去と将来で
変わらないという仮定より導出さ
れる式より、N_{D2} を算出する。
$$N_{D2} = N_{Di} \times N_{A2}/N_a$$

(20) h_1 オーバーレイ後の設計寿命に必要
なアスファルト厚を表わす。W-
MATT, Mix CODE, E_r の条件に
あった設計曲線図表を利用して
N_{D2} に対応する値を読み取り記入す
る。

(21) h_0 オーバーレイの必要な厚さを表わ
す。h_0 は次式で算出する。
$$h_0 = h_1 - h_{eff}$$

2.6.3.5 オーバーレイ厚の決定
路床の歪基準に基づいて設計したオーバーレイ厚 (15)
と、アスファルトの歪基準に基づいて設計したオバ
ーレイ厚 (21) を比較して、安全であると思われる方
を採用する。

2.6.4 設計例
以下の特性値を持つ舗装にオーバーレイを適用する
場合の設計例を示す。

既設舗装の特性値：W-MAAT 15℃

<table>
<thead>
<tr>
<th>材料</th>
<th>厚さ</th>
</tr>
</thead>
<tbody>
<tr>
<td>h_2</td>
<td>200mm</td>
</tr>
<tr>
<td>h_1</td>
<td>180mm</td>
</tr>
<tr>
<td>E_r</td>
<td>4×10^8N/m2</td>
</tr>
<tr>
<td>Mix-Code</td>
<td>S1-F2-100</td>
</tr>
</tbody>
</table>

ワークシート Q は表-9 のようになる。表-9 より、
それぞれの設計寿命にたいする必要オーバーレイ厚は
以下のようにあることがわかる。

<table>
<thead>
<tr>
<th>設計年数</th>
<th>オーバーレイ厚</th>
</tr>
</thead>
<tbody>
<tr>
<td>10年</td>
<td>40mm</td>
</tr>
<tr>
<td>20年</td>
<td>70mm</td>
</tr>
</tbody>
</table>

3. 各オーバーレイ設計法の比較

国の標準とする設計法はその国の地域性、および経
済性を反映したものである。たとえば、凍上対策や使
用材料の品質などはその国の地域性の上に成り立つ
と考えられる。同時に、設計に用いる交通条件や
設計年数も補修のサイクルとコストといった経済性の
要因を含んでいると考えられる。

したがって、一概に各設計法の比較といっても本来ならばその国で使用される材料の規格・基準や設計年数とコストの関係、地域性といった要因を十分に理解した上での比較が必要であろう。しかし、残念ながら各設計法に影響を受ける要因すべてを検討することは非常に困難である。そこで、以下では、各設計法の骨子を抜き出して比較を行う、各設計法の特徴を明確にするとともに、できるだけ比較可能な条件を設定し、各オーバーレイ設計法によるその仮定に基づいた設計オーバーレイ厚の比較を行い、併せてわが国の設計法（維持修繕要綱）との比較を試みるのみにとどめた。

3.1 各設計法の特徴

設計法の骨子として考えられるものには、オーバーレイを実施する際の事由、設計に用いる各条件とその評価法、および設計手順などがある。ここではこれまで紹介してきた設計法を要約する意味も兼ねて、個々の項目についてまとめて、設計法の特徴を明確にするものである。

3.1.1 各設計法の設計手法

オーバーレイの設計法はその手法で分類すると大きく以下の4つに分けることができると思われる。

(1) 既設舗装のたわみ量を測定して、経験的に求められた設計図表からアスファルトオーバーレイ厚を決定する方法。

(2) 既設舗装のたわみ量を測定して、理論的な解析手法（主に弾性層理論）から作成した設計図表を用いてアスファルトオーバーレイ厚を決定する方法。

(3) 新設舗装として必要なアスファルト等価厚と既設舗装の実質有効アスファルト等価厚（残存アスファルト等価厚）の差をオーバーレイ厚とする方法。

(4) 目視観察（既設舗装のひび割れ率など）から判断して、経験的に厚さを決めめる方法。

今回調査した国および機関を上記分類にしたがって分けると表-10に示す通りである。

表-10 オーバーレイ設計手法の分類

<table>
<thead>
<tr>
<th>手法</th>
<th>既設舗装のたわみ量を測定して、経験的に求められた設計図表からアスファルトオーバーレイ厚を決定する方法</th>
<th>既設舗装のたわみ量を測定して、理論的な解析手法（主に弾性層理論）から作成した設計図表を用いてアスファルトオーバーレイ厚を決定する方法</th>
<th>既設舗装として必要なアスファルト等価厚と既設舗装の実質有効アスファルト等価厚（残存アスファルト等価厚）の差をオーバーレイ厚とする方法</th>
<th>目視観察（既設舗装のひび割れ率など）から判断して、経験的に厚さを決める方法</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>道路維持修繕要綱 カリフォルニア イギリス カナダ AI</td>
<td>AASHTO シェル研究所 AI</td>
<td>AI</td>
<td>最小厚さの規定があるだけである。シェル研究所では、オーバーレイ施工後のわずか掘れ量を予測し、その変形量によって検証を行っていることが一つの特徴となっている。</td>
</tr>
</tbody>
</table>

3.1.2 オーバーレイ厚設計の方針およびその事由

各設計法の設計方針および事由は設計法の標準化に伴う背景的な面を含んでいると考えられるため、設計法の基本的な姿勢、さらにはオーバーレイを含めた維持・修繕の概念を知る上で重要な問題と考えられる。

表12は設計の方針と事由について示したものである。

各国・機関とも設計方針は、舗装の破壊を補修する目的で行う傾向は薄く、むしろ予防的に行なっている場合が多い。特にカナダ、AASHTOでは、維持修繕を新設舗装からその後の維持・修繕までを含めた舗装の総合的な管理システムの一部として体系化しており、舗装にかかるトータルコストの観点を重視している。

設計の事由としては、既設舗装の表面たわみ量が大きすぎるなど、構造的耐荷力が不足した状態による場合が一般的である。

3.1.3 交通条件の評価法

交通条件は要素としてその国の経済的な面を含んでおり、各国で規定する設計荷重や対象とする車両には違いがある。さらに、交通条件は厚さの設計にあたって直接影響するものであるため、交通条件の評価法を検討することは重要と考えられる。

表13は、各設計法で用いる交通条件を比較したもののである。いずれも新設舗装の構造を設計に用いる設計交通条件をそのまま使用している。設計荷重は8.2 t軸荷重を採用しているものがほとんどであるがカリフォ
表-11 オーバーレイ設計手法の概略

<table>
<thead>
<tr>
<th>国名</th>
<th>オーバーレイ厚算出方法</th>
<th>算出結果</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>AI</td>
<td>有効舗装厚法</td>
<td>新設として必要なTnと既設舗装の有効厚度Teの差Tn−Te</td>
<td>アスコン厚</td>
</tr>
</tbody>
</table>
| | たわみ法 | 交通条件EALdより、最大たわみをRWDを用い、設計曲線から求める。 | 々 | 解析区間は、路床からアスファルト層まで全て同じ状態の区間を一区間にする。路床のMaは実調決定したものとして補正する。
| | AASHTO | たわみ試験より、路床土のMa及び各層の弾性係数を求める。この数値を用いて、オーバーレイに必要な層構成指数を求め、SNw＝Sn/（1＋ス）Nで求め、このSNwよりオーバーレイ厚はDw＝Snw/sで算出 | 々 | 理論式とAASHTO試験の結果から求めた図表を用いて算出する。
| | カリフォルニア | 交通指数TI、最大たわみ量dを用い、設計曲線から求める。 | 々 | 通常一般にたわみ量が0.050～0.030inchの間になるよう設計する。場合によっては、これよりゆるい設計たわみ量の時もある。
| | カナダ | 交通条件EALより求めたたわみ量、春季復元たわみ量を用い、設計曲線から求める。 | アスコン厚 (アスコン換算0.5) | 一般にたわみ量が0.050～0.030inchの間になるよう設計する。場合によっては、これよりゆるい設計たわみ量の時もある。
| | イギリス | 交通条件、最大たわみ量dを用い、設計曲線から求められる。 | アスコン厚 | たわみ量によるオーバーレイ断面の均一区間の選定は行わない。一般に層間の状況、オーバーレイ断面の均一性を考慮して、オーバーレイ断面を指定期間の区間割りを設定する。 |
| | シェル研究所 | 交通条件、既設舗装の評価条件を用い、設計曲線から必要アスコン厚を算出。オーバーレイ厚は、h－bマッチで算出 |
| | たわみ法 | 在来舗装をアスコン等価換算厚Taoで評価し、次に設計CBRと将来の大型車交通量からアスコン等価換算厚Taoを求める。T＝Tao－Tao | 々 | 大型車交通量、Tao、Taoは表より求め、Tの最大厚は150mm程度としてそれぞれ以上の場合は他の工夫を考慮。
| | たわみ法 | ベンゲルマンヒームによる測定たわみ量dからたわみ量Dを求め、表からオーバーレイ厚を決定する。 | 々 | 舗装体の部分的な平均温度による温度補正を行なう。

表-12 設計の方針とその事由

<table>
<thead>
<tr>
<th>国名</th>
<th>設計の方針</th>
<th>设計の事由</th>
<th>備考</th>
</tr>
</thead>
</table>
| AI | 有効舗装厚法 | できるだけ条件にみあったオーバーレイを設計する。 | 既設舗装のTn（アスコン等価厚）が、現在、または将来において不足している。
| | たわみ法 | 大きいたわみ量を減少させるためにオーバーレイする。 | 現在、または将来において表面たわみ量が大きい。
| | AASHTO | 舗装を総合的に管理するシステムの一環としてオーバーレイが位置づけられている。 | 構造的耐荷力が所定の値以下となった場合。
| | カリフォルニア | 大きいたわみ量を減少させるためにオーバーレイする。 | 既設舗装の表面のたわみ量が許容できないたわみ量より大きい。
| | カナダ | 舗装を総合的に管理するシステムの一環として、オーバーレイが位置づけられている。 | 表面たわみ量が許容されるたわみ量より大きい。
| | イギリス | 舗装を総合的に管理するシステムの一環として、オーバーレイが位置づけられている。 | 許容される最大のたわみ量は交通条件、既設舗装の表層厚さから決定する。
| | シェル研究所 | 世界的な利用を目的とした地域性の枠を越えた適用範囲の広い設計手法。舗装の寿命を的確に予測する。 | 既設舗装の残存寿命を検出してオーバーレイの適用を考慮。

Vol. 33 No. 166 (1991年) 53
表－13 交通条件

<table>
<thead>
<tr>
<th>国名</th>
<th>交通荷重</th>
<th>交通量の評価方法</th>
<th>設計交通量</th>
<th>質考</th>
</tr>
</thead>
<tbody>
<tr>
<td>AI</td>
<td>8.2t軸荷重</td>
<td>設計荷重の車両交通量。</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8.2t軸荷重の車両交通量。</td>
<td>設計期間内に予想される8.2t軸荷重の累積通過車数。</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AASHTO</td>
<td>8.2t軸荷重</td>
<td>全交通量を8.2t軸荷重に換算して、その通過台数で示す。</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8.2t軸荷重</td>
<td>設計期間中の8.2t軸荷重の換算累積通過車数。</td>
<td></td>
<td></td>
</tr>
<tr>
<td>カリフォルニア</td>
<td>2.268t軸荷重</td>
<td>2.268t軸荷重の車両交通量で示す。</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.268t軸荷重の車両交通量で示す。</td>
<td>20年間の累積2.268t軸荷重交通量EWLより求めたTIで示す。</td>
<td></td>
<td></td>
</tr>
<tr>
<td>カナダ</td>
<td>8.2t軸荷重</td>
<td>8.2t軸荷重の車両交通量で示す。</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8.2t軸荷重の車両交通量で示す。</td>
<td>設計期間中の8.2t軸荷重の累積通過車数。</td>
<td></td>
<td></td>
</tr>
<tr>
<td>イギリス</td>
<td>8.2t軸荷重</td>
<td>無積載時重量1.5t以上の貨物、バスの交通を8.2t軸荷重に換算する。</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8.2t軸荷重</td>
<td>8.2t換算軸荷重の累積通過車数。</td>
<td></td>
<td></td>
</tr>
<tr>
<td>シェル研究所</td>
<td>8.2t軸荷重</td>
<td>全交通量を8.2t軸荷重に換算して、その通過台数で示す。</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8.2t軸荷重</td>
<td>8.2t軸荷重の車両交通量で示す。</td>
<td></td>
<td></td>
</tr>
<tr>
<td>要綱</td>
<td>5t軸荷重</td>
<td>全交通量を5t軸荷重に換算して、その通過台数で示す。</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5t軸荷重</td>
<td>5年間の5t軸荷重換算台数。</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

表－14 既設舗装の評価法

<table>
<thead>
<tr>
<th>国名</th>
<th>既設舗装の評価方法</th>
<th>設計条件</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>AI</td>
<td>有効補装層厚法</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>交通路床強度Mc（CBR、R值）</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>①PSIと舗装材料の観察</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>②舗装構成各層の破壊状況観察</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A1方法による復元たわみ法</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>RBD＝（X＋2S）H－C</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>必要Thは新設舗装の設計方法により決定する</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AASHTO</td>
<td>既設舗装の路床、路盤、アスファルト層の層特性NDTによるたわみ測定：レジリエンツ係数の決定</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>交通条件、気象条件及び各種のレジリエンツ係数から層構造指数を求める。</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>それが用いてオーバーレイ厚を得る</td>
<td></td>
<td></td>
</tr>
<tr>
<td>カリフォルニア</td>
<td>WASO法による最大たわみ量</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>全測定値の80％が下回り残りの20％</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>が上回るような80％のたわみ量</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ディフェクトメーターにより測定し</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>て、ベンケルマンバーツを用いた手計算によるものとある</td>
<td></td>
<td></td>
</tr>
<tr>
<td>カナダ</td>
<td>CGRA方法復元たわみ量</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>d＝m＋2a</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>春期測定値を1とし、他の季節測定値への換算をする</td>
<td></td>
<td></td>
</tr>
<tr>
<td>イギリス</td>
<td>イギリス式最大たわみ量</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>全測定値の95％以上が含まれる最大たわみ量</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>温度補正（20℃換算）をする</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shell</td>
<td>混合物特性の測定</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>既設舗装の構造調査</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>FWDによる表面たわみ</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>（たわみ比Q、最大たわみdo）</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>混合物特性値S－F－pen</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>年平均気温w－MAAT</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>駐車厚</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>FWD測定による駐車車両たわみ量 Etawah</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>アスファルト層厚</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

オフリーナの5000ポンド（2.268 t）輪荷重は若干軽く、日本の5 t輪荷重はやや重い設計荷重である。

3.1.4 既設舗装の評価法

各オーバーレイ設計法の基本原理は既設舗装の支持強度の不足分をオーバーレイによって補うとするものである。したがって、設計を行う際には、既設舗装の残存強度を適切に評価することが非常に重要な問題と考えられる。

既設舗装の評価法にはいくつかの種類があるが、いずれも既設舗装を破壊することなしに評価を行えるものである。表－14に既設舗装の評価法を示す。

現在の設計法では、たわみ量により評価するものが多いため、最近の傾向としてはAASHTOがFWDに代表されるNDT（非破壊試験）を採用するなど、理論
たわみ量測定方法の基本はペンケルマンビームによるたわみ量測定であるが、一般に荷重条件として設計荷重をそのまま使用する例が多い中でイギリスは設計

<table>
<thead>
<tr>
<th>国名</th>
<th>たわみ量・測定方法</th>
<th>報告</th>
<th>荷重車の条件</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>4.1ton</td>
<td>D=Drn-Dr</td>
<td>タイヤの大きさ 10.00×20.12プライ</td>
<td>湿度補正</td>
</tr>
<tr>
<td></td>
<td>9.0m以上</td>
<td></td>
<td>空気圧 5.6kg/cm² (552kpa)</td>
<td>季節補正</td>
</tr>
<tr>
<td></td>
<td>Dm</td>
<td></td>
<td>8.2t軸荷重</td>
<td></td>
</tr>
<tr>
<td>AASHTO</td>
<td></td>
<td></td>
<td></td>
<td>動荷重P、載荷荷荷の半径a。</td>
</tr>
<tr>
<td></td>
<td>P</td>
<td>すべての動的たわみ</td>
<td>NDT装置</td>
<td>及び載荷荷荷の等荷重P。</td>
</tr>
<tr>
<td></td>
<td>h1;E1;U1</td>
<td>測定方法</td>
<td></td>
<td>は既知である</td>
</tr>
<tr>
<td></td>
<td>h2;E2;U2</td>
<td></td>
<td></td>
<td>アスファルト層の弾性係数</td>
</tr>
<tr>
<td></td>
<td>h3;E3;U3;</td>
<td>70°F（約21°C）に換算している</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Un-1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>En;Un</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>カリフォルニア</td>
<td>1.4 m</td>
<td>D=Drn+ (Dm-Drn)/2</td>
<td>11.00×22.5-12ply</td>
<td>たわみ量は最大たわみと復元たわみの平均値を用いる</td>
</tr>
<tr>
<td></td>
<td>7.6 m</td>
<td>11.00×22.5-12ply</td>
<td>70psi（空気圧）</td>
<td>通常はディフリクトメータを用いて測定される</td>
</tr>
<tr>
<td></td>
<td>Dm</td>
<td>8.2t軸荷重</td>
<td>Creep Speed</td>
<td></td>
</tr>
<tr>
<td>カナダ</td>
<td>4.1ton</td>
<td>(Dm-Drn)-(Drn-Dr) ≤0.025mmのとき</td>
<td>5.6kg/cm²</td>
<td>アーム先端にかかる荷重の</td>
</tr>
<tr>
<td></td>
<td>2.69 m</td>
<td>D=(Dm-Drn)-(Drn-Dr)</td>
<td>(空気圧)</td>
<td>影響を修正できる</td>
</tr>
<tr>
<td></td>
<td>9.15 m</td>
<td>0.025mmのとき</td>
<td>8.2t軸荷重</td>
<td>溫度70°F(21.1°C)補正</td>
</tr>
<tr>
<td></td>
<td>Dm</td>
<td>Creep Speed</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>イギリス</td>
<td>3.2ton</td>
<td>D=(Dm+Dm-Drn)/2</td>
<td>6350kg軸荷重</td>
<td>たわみ量は最大たわみと復元</td>
</tr>
<tr>
<td></td>
<td>1.3 m</td>
<td>6350kg軸荷重</td>
<td>7.50×200or8.25×20</td>
<td>たわみの平均値を用いる</td>
</tr>
<tr>
<td></td>
<td>3 m</td>
<td>のジグザグパターン</td>
<td>のタイヤ</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dm</td>
<td>590kN/m²（空気圧）</td>
<td>Creep Speed</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>シェル</td>
<td></td>
<td>Qt=Dr/Dm</td>
<td>150kg</td>
<td>落下荷重の振動周期</td>
</tr>
<tr>
<td></td>
<td>Dm</td>
<td>Drを報告する</td>
<td></td>
<td>0.028sec</td>
</tr>
</tbody>
</table>
荷重と異なる荷重条件を採用している。
測定たわみ量には大きく分け、最大たわみ、復元たわみ、残留たわみの3種があるが、一般には復元たわみ量が用いられているようである。イギリス、カリフォルニアでは最大たわみ量と復元たわみ量の平均値を設計条件としている。

たわみ量の測定条件として次の2種が記述されている。一つは舗装の支持力が最小となる融解期に測定するもので、カナダがこれに該当し、AASHTOも舗装の評価を春季に行うことを原則としている。もう一つは、時期に関する厳しい制限はないが、測定時の舗装体温度が20℃（あるいは21℃）の時のたわみ量に修正するので、AI、AASHTO、カナダ、イギリスがこれに該当する。なお、カリフォルニアについては補正について記述した資料がなく不明である。

シェル研究所の方法は、ベンケルマンピームではなくFWDによる落下衝撃荷重下でのたわみ量を測定しており、AASHTOもこれを代表的な測定方法としている。

3.2 アスコン等価換算を用いる設計法のオーバーレイ厚の比較

アスコン等価換算厚で既設舗装を評価しているのは、AIおよびわが国の維持修繕要綱がある。設計の手順については同じであるが既設舗装の評価に用いる等価換算係数のとり方に若干の違いがある。ここで、図-30に示す断面について換算係数を最大、平均、最小に取った場合のオーバーレイ厚の変化を比較してみた。

表-16は、図-30の断面について換算係数を変化させたときのアスコン等価合計厚を示したものである。

ただし、表層についてはひびわれ率による目安があるので、適切に換算係数が得られると判断し、要綱では水準3、すなわち換算係数0.5とし、AIについても同じく0.5を用いた。そして、観察の行えない路盤層以下の部分について換算係数を変化させている。本断面をB交通用道路に適用した結果を表-30に示す。

交通に供用させるものとし、設計年数10年とした時のCBR=3%の路床上に必要なアスコン等価合計厚を求め、オーバーレイ厚を式とすると表-17のとおりである。求めたオーバーレイ厚を図-31に示す。図からわかるように、換算係数のとり方によってかなりの厚さの差が生じている。AIと要綱の間の差についてはAIの

<table>
<thead>
<tr>
<th>国、機関</th>
<th>維持修繕要綱</th>
<th>A1</th>
</tr>
</thead>
<tbody>
<tr>
<td>路床CBR％</td>
<td>最小</td>
<td>平均</td>
</tr>
<tr>
<td>必要アスコン厚</td>
<td>26</td>
<td>28.5</td>
</tr>
<tr>
<td>アスコン等価厚</td>
<td>14.3</td>
<td>19.1</td>
</tr>
<tr>
<td>オーバーレイ厚</td>
<td>12.0</td>
<td>7.0</td>
</tr>
</tbody>
</table>

図-31 オーバーレイ厚算出結果

表-18 アスコン等価厚の計算

<table>
<thead>
<tr>
<th>材料</th>
<th>最小</th>
<th>平均</th>
<th>最大</th>
<th>最小</th>
<th>平均</th>
<th>最大</th>
</tr>
</thead>
<tbody>
<tr>
<td>アスコン</td>
<td>0.5</td>
<td>2.5</td>
<td>2.5</td>
<td>0.5</td>
<td>2.5</td>
<td>2.5</td>
</tr>
<tr>
<td>オーガルレミー</td>
<td>0.4</td>
<td>4.0</td>
<td>6.0</td>
<td>0.8</td>
<td>8.0</td>
<td>2.0</td>
</tr>
<tr>
<td>20cm石材</td>
<td>0.23</td>
<td>0.28</td>
<td>5.6</td>
<td>0.35</td>
<td>7.0</td>
<td>0.1</td>
</tr>
<tr>
<td>25cm切込</td>
<td>0.15</td>
<td>3.8</td>
<td>5.0</td>
<td>0.25</td>
<td>6.3</td>
<td>0.1</td>
</tr>
<tr>
<td>アスコン等価合計厚</td>
<td>14.3</td>
<td>19.1</td>
<td>23.8</td>
<td>12.0</td>
<td>16.3</td>
<td>20.5</td>
</tr>
</tbody>
</table>

56 ASPHALT
3.3 たわみ量を用いる設計法のオーバーレイ厚の比較

たわみ量を設計に用いる方法について比較を行うためには、設計に用いる交通条件や既設舗装のたわみ量の評価法に違いがあるため、仮定条件を設けて各設計法の設計条件に見合うように換算してはならな

（1）比較のための設定条件

① 設計交通量

交通量の評価方法が各機関により、設計荷重、軸荷

重換算係数などを異なるため、一概に同一条件に設定しにくい。そこで、設計交通量をわが国の要綱で採用しているA、B、C交通道路で設計年数を10年とした場合を想定した。

A、B、C交通道路で10年間の交通量は5t輪荷重

の累積通過数でそれぞれ15万、100万、700万回に相当する。各国の交通量に換算する場合は、各国で使用している軸荷重換算係数を用いてこの5t輪荷重を各国の設計荷重に換算し設計荷重の累積通過軸数あるいは累積通過輪数を求めた。

表-18は設定した交通量を各国の交通条件に換算した結果である。表中の換算係数は5t輪荷重が1回通過した場合各国の評価では設計荷重が何回通過したことになるかを示す数値である。

（2）既設舗装の表面のたわみ量の評価

舗装断面は各交通量に対しそれぞれ図-32に示すように想定した。各設計法で用いるたわみ量は各々の国で採用している方法で測定したものに依っているため、オーバーレイ厚を求めるには、各国の測定法によるた

わみ量が必要である。しかし、測定法の違いによるた

わみ量の相関性が明らかでないため、ここでは単純にた

わみ量が荷重に比例するという仮定の下で各国の測定

法でのたわみ量に換算する方法を用いた。D.Croney

は、その著書の中で「荷重とたわみ量との間には比例

関係があると仮定して換算すれば、たわみ量の近似

な比較が可能である」と述べている71。今回はこの仮定

に依って、わが国の方法で解析期に測定したたわみ量

（20℃たわみ量に補正）を各国の測定法の荷重条件にあ

わせて換算した。

たとえば、5t輪荷重でのたわみ量と8.2t軸荷重で

のたわみ量は、図-33に示す換算スケールで示される。

なお、シェル研究所、AASHTOの設計法では、たわ

みの測定法が他の国の方法と異なるため比較の対象か

ら除いた。

（3）オーバーレイ厚の設計

以上の考えに基づき、5t輪荷重下でのたわみ量

0.5〜2.5mmに対応するオーバーレイ厚を求めた。その

結果を表-19に示す。設計オーバーレイ厚として直接

アスコン厚を算出せず、砂利換算厚で算出されるカナ

ダについては、砂利の等価換算係数を0.5としてオーバ

ーレイ厚を求めた。なお、設計に用いる条件として交

通条件より決まる設計たわみ量を用いる設計法につい

表-18 交通条件の換算

<table>
<thead>
<tr>
<th>国名</th>
<th>5t輪荷重を1とし た時の換算係数</th>
<th>設計交通量</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>道路</td>
<td></td>
<td>A交通・10年</td>
<td>B交通・10年</td>
<td>C交通・10年</td>
<td></td>
</tr>
<tr>
<td></td>
<td>設計荷重 (t)</td>
<td>査算係数</td>
<td>累積交通量 (×10⁶)</td>
<td>累積交通量 (×10⁶)</td>
<td>累積交通量 (×10⁶)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8.2t軸</td>
<td>2.21</td>
<td>0.33</td>
<td>2.2</td>
<td>15.0</td>
<td></td>
</tr>
<tr>
<td>ベルギー</td>
<td>2.5m等軸</td>
<td>3.00</td>
<td>0.45</td>
<td>3.0</td>
<td>19.0</td>
<td></td>
</tr>
<tr>
<td>ドイツ</td>
<td>8.2t軸</td>
<td>2.32</td>
<td>0.35</td>
<td>2.32</td>
<td>16.2</td>
<td></td>
</tr>
<tr>
<td>美 国</td>
<td>10t軸</td>
<td>1.00</td>
<td>0.15</td>
<td>1.0</td>
<td>7.0</td>
<td></td>
</tr>
</tbody>
</table>

Vol. 33 No. 166 (1991年) 57
表19 オーバーレイ厚算出結果

<table>
<thead>
<tr>
<th>国名および機関</th>
<th>交通</th>
<th>設計たわみ量 (mm)</th>
<th>オーバーレイ厚 (cm)</th>
<th>5輪荷重下のたわみ量 (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A交通</td>
<td>C交通</td>
<td>B交通</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.3×10⁸</td>
</tr>
<tr>
<td>カリフォルニア</td>
<td></td>
<td></td>
<td></td>
<td>9.0</td>
</tr>
<tr>
<td>カナダ</td>
<td></td>
<td></td>
<td></td>
<td>6.0</td>
</tr>
<tr>
<td>イギリス</td>
<td></td>
<td></td>
<td></td>
<td>5.0</td>
</tr>
<tr>
<td>要綱</td>
<td></td>
<td></td>
<td></td>
<td>5.0</td>
</tr>
</tbody>
</table>

注）イギリスの上段の数値は破壊確率0.5の場合、下段の数値は破壊確率0.9の場合

A交通 既設舗装のたわみ量

C交通 既設舗装のたわみ量

図34 オーバーレイ厚の比較（A交通相当）
図35 オーバーレイ厚の比較（B交通相当）

図36 オーバーレイ厚の比較（C交通相当）

図36に示すA交通道路では、カリフオルニアが若干厚いオーバーレイ厚を示し、AI、カナダがほぼ同じ厚さでやや小さな厚さとなっている。要綱はほぼ中間位置しており、AIで設計した厚さが要綱で設計した厚さの下限値にほぼ相当している。なお、イギリスはオーバーレイの適用範囲内に含まれないのでオーバーレイ厚は与えられていない。

図35に示すB交通道路ではイギリスもオーバーレイの適用範囲にある。A交通では要綱よりも薄いオーバーレイ厚を与えていたカナダがB交通道路では要綱よりも厚いオーバーレイ厚とな
ている。AI、要織の関係では、もしくは似た厚さを与えて
いるが、B 交通では AI で設計した厚さが要織のほぼ中
央値に相当している。

図−36に示す交通の場合には、イギリス、カナダ、
カリフオルニア、AI のいずれもがかなり厚いオーバー
レイ厚となり、要織とは差がみられる。このようにわ
か国の維持修理要織のオーバーレイ厚は、重交通にな
るにつれ、各国に比べオーバーレイ厚が小さいことが
分かれる。

4. おわりに

以上、述べてきたように今回の調査では、各国・機
関ともオーバーレイを維持補修の体系中に明確に位
置づけており、その設計法も定められているものであ
った。また、最近では、オーバーレイだけを切り離さ
ず、舗装構造設計と維持補修を 1 つの流れとして考え、あ
る一定期間内の舗装にかかるトータルコストを最小に
しようとする舗装メンテナンスシステムの概念が強
く現れるようになっている。しかし、このシステム
もオーバーレイ設計と同様に、その背景には各国の
経済性、地域性などの要因がさまざまな形でからんで
いるため、一朝一夕には完成を見ない複雑な面が多分
に含まれていると考えられる。

今回は維持・修繕の中で大きなウェイトを占めるオ
ーバーレイだけを取り扱ってきたが、今後は舗装をト
ータルに考えた舗装のメンテナンスシステムの研究
調査も必要と考えられる。

今回調査した国・機関が英語圏のみにとどまったの
は、メンバーの非力によるものであり、また、オバ
ーレイ厚の比較を行った際の仮定、あるいは前提条件
などにはいろいろご批判もあるかもしれませんが、単
なる設計法の紹介にとどめたくないのでの余裕の一策
とご容赦いただきたい。また、オーバーレイの設計法
については、かつてのアスファルト舗装技術研究グル
ープ報告として昭和57年にまとめられているが、9)そ
の後は9年経過したものの各国の設計法はほぼ変化
がないのが実情である。したがって、前回のレポート
に比べての新規性がほとんどないことも残念なことと
考えている。

最後に本文をまとめにあたり、ご指導いただいた
北海道大学姫野教授に感謝の意を表します。

参考文献

1) The Asphalt Institute, “Asphalt Overlays for
 Highway and Street Rehabilitation” MS-17,
 1987
2) AASHTO, “AASHTO Guide for Design of
 Pavement Structures 1986”, 1986
3) California Test-356, “Methods of test to De-
 termine Overlays Requirements by Pavement
 Deflection Measurements”
4) RTAC (Roads & Transportation Association of
 Canada), “Pavement Management Guide”

5) C.K.Kennedy and N.W.Lister, “Prediction of
 Pavement Performance and the Design of Over-
 lays” TRRL.LR833
6) Shell International Petroleum Co., Ltd., “Shell
 Pavement Design Manual” 1978
7) D.Croney, “The Design and Performance of
 Road Pavements: Chapter21” 1977
8) 日本道路協会 “道路維持管理要綱” 昭53
9) 井上，栄木，福手 “オーバーレイの設計法（1）
 ～（3）” アスファルト130～132 昭和57

Vol. 33 No. 166 (1991 年)
越 前 の 峠 道

中 村 俊 行
建設省近畿地方建設局
福井工事務所所長

1．越前の三つの変
国道365号は、武生市から「越前の母なる川」九頭竜川の左傍大支川である日野川の左岸を南下する。JRの北陸線を右手に見ながら南に走り、北陸自動車道の高架橋をくぐると南条町から今庄町に入る。今庄インターチェンジをすぎて日野川を二度渡ると今庄の市街である。ここから右手に主要地方道今庄城館線が分岐している。この道を歩くとJRの南今庄駅を経て「新道」の集落である。ここからさらに道は分かれ、右方向に国鉄の廃線敷である県道をたどると「山中峠」に達する。

今庄城館線はここから左に折れ、「二ツ屋」をすぎると車両の通行は出来なくなる。徒歩で地図をのぞむと、昔の道のりに共なる「木ノノ木原」を訪ねてみると、石畳の小径は分かれず、石畳の小径は分かれて山間部へと続く。ちょっと分水嶺への登り口が板取の里である。旧道の細い坂道の両側にかやぶきも残る民家が静かに並んでいる。ここから国道はその上り勾配を大きくし、いくつかのヘアピンカーブを過ぎると「木ノノ木峠」に至る。その名の通り峠付近には木の木が群生しており、県の天然記念物に指定されている樹高35m、幅8mの木の木が目を引く。

この山中、木ノノ木、樹ノ木の3つの峠が古代より峠内と越前を結んでおり、それぞれに歴史を刻んでいるのである。

北陸は古く越（こし）とよばれ、後の若越両国に該当する地域には若狭、高志、三国、角鹿（つぬがり）の国造制諸国が存在した。大化改新時、越が越国となり、そして持続的歩み越前、越中、越後の三国に分かれ、718年能登国、823年には加賀国が置かれ越前国を形成した。
図-2 三町位置図

は縮小された。奈良時代以前の越前と畿内との交通は、
幹道が急峻なこともあり海運の占める割合も大きかった。
この時代東大寺等の大荘園が越前の平野部の各地
に開田され、収穫物は九頭竜川を利用して三国湊から
敷賀港に陸揚げされ、琵琶湖、宇治川、木津川を利用して
して平城京に輸送されたと言われている。
2. 山中峠

平安初期（830）以前の北陸官道である。敦賀から敦賀湾に至る赤崎、五幡（いすはた）、阿曽、杉津と北上
し元比田から鉿伏山の鞍部である山中峠を越えて今庄
に達する。山中峠より今庄までの地域一帯の山は、古
来「かえる山」といわれており、京へ帰ると帰る山の
掛け詞になっている。

多くの歌人がこの「かえる」を歌っている。

＊かえるの 道行かむ日は 五幡の
　坂に袖ふれ われをし思はば 大伴家持
＊行きめぐり 誰も都に帰る山
　いつはたときく 程の遙けさ 紫式部
＊かりかねの 帰る道にやまようむ
　越の山中 かすぎへだてて 西行

3. 木ノ芽峠

この峠越が山中峠に代わって北陸官道に成ったのは
平安時代の初期と言われている。その後1200年間、敦
賀より湖西を通じて京に通っていたので西近江路とい
われ、多くの人がここに行き来した。

この木ノ芽峠の標高は628m、一方山中峠はおおよそ
400mである。なぜ230mも高い所に新しい峠を開いた
のだろうか。2つの利点があったと言われている。
一つは地形を利用しての都への防御としたことであり、
もう一つはこの峠から敦賀近辺まではいっぱいの下りであ
り、山中峠越えの五幡越のように幾つもの峠がなかった
ということである。

996年、紫式部が木ノ芽峠を越えて越前国府（今の武生
市）への赴任に同行してこの峠を越えている。「紫式部
日記」によると、一行は、まず逢坂関を越えて大津に
出ている。ここから琵琶湖を船で横断して北陸の塩津
に上陸し、塩津山を越えて角熊（敦賀）に一泊した。
ここでは一の宮（今の気比神宮）にお参りして、最大
の難所である木ノ芽峠越えの安全を祈っている。木ノ
芽峠では盗賊らしいおやしい人影を見たように書かれ
ており、官道としては厳しい当時の峠の厳しさがうかがえる。

余談になるが、紫式部は越前国府に一年弱滞在して
いるが、常に都を懸かしがり、特に越前の冬の厳しさを
嘆いている。

現在の木ノ芽峠には西光寺、木ノ芽院、観音堂、
鉿伏院などの城跡がそのまま残っている。これらはこ
の峠をめぐる多くの戦いの歴史を刻んでいるが、特に
大きな戦いとしては、元亀元年（1570）朝倉と信長の
戦い（朝倉軍の勝ち）、天正元年（1573）朝倉滅亡、天
正3年信長の越前一揆一揆平定等がある。

また行きには「峠の茶屋」として有名な前川家の500余
年にわたり残っている。平貞盛を祖先とする前川家は
戦国大名として各地に転戦していたが、26義次に
至ってここに定住している。代々の越前藩主を仕官
を勤められたが、それを辞退し、茶屋番や山回り役を
勤めたといわれている。

4. 桁の木峠

標高537m、この峠は西近江路に対して湖東に通じる
ことから西近江路と言われ木ノ本、関ヶ原を経て中山
道に通じ、また長浜を経て草津で東海道に合流し、都
に入った。古くから木ノ芽峠と並んで、軍事的要衝で
あったが天正6年（1578）、朝倉滅亡後信長により北の
庄（今の福井市）に封じられた柵田勝家により安土、
京都方面への近道として改築された。

改築した木峠は、道幅三間、縄（ふち）三尺ずつ、
両側の側溝三尺ずつ、土塁六尺ずつ、都合道路敷は七
間であり、これ以来柵ノ木峠は旅人の往来で大変にき
わったと言われている。

この改築から5年だって天正11年2月末、まだ道を
埋める雪をはらって柵田勝家は、信長亡き後の天下を
巡って対立する秀吉に対して挙兵した。自ら改築した
5. 現在の峠越え

越前への入口とも言うべき二ノ木峠についてその歴史と、それにまつわる話を書いてみた。歴史が変わらず、時代が移ってしまった地域の地形の変化と、交通の要衝としての役割は少しも変わっていない。その上田長崎はこの地域が福井県を南北に分けることとなり、鉄道、自動車道路という新しい交通路の開発が行われた。

明治29年に開通した国鉄北陸線は、山中峠越えで敦賀に至っていた。しかし昭和38年、木ノ尾峠の付近を当時日本最長の北陸トンネルが開通し、これによって旧築線敷は山中峠越えの自動車道として使われるようになっている。

写真 - 2 櫛ノ木峠国道365号福井・滋賀県境

木ノ尾峠については、先に書いたように現在は国道365号の福井、滋賀県境である。昭和52年に開通した北陸自動車道は、ちょうど山中と木ノ尾の両峠の中間に近い敦賀トンネルにより一気に通過している。なおこのトンネルより敦賀インターチェンジ間15kmは、上下線が全くなく大きくセパレートしており、地形の狭さからルート選定の苦労をうかがうことができる。

国道8号は、この峠を通じて武生市より日本海沿いの河野村に出るルートを経ている。そして敦賀湾沿いの長田からは、山中峠越えの旧官道に沿いつれも長田から海岸沿いを敦賀側に通じている。

鉄道、自動車道路の開通により、峠越えは苦労は昔の話となったが、歴史における道と、とりわけ峠道の持つ意味や役割は大いに興味深いものである。
コンクリートの配合

舗装用のコンクリートを製造する場合には、先ず各材料（通常はセメント、細骨材及び粗骨材）の割合を決める必要があり、このことをコンクリートの配合といいます。

コンクリートの配合を決める場合は、所要の品質（所要の強度を持ち、耐久性、すりへり抵抗が大きいこと
に代表される性状のこと）を有し、同時に施工性に適
したワークビリティが得られることにより決めることが重要であります。

配合には、示方配合（示方書によって定められた配合）と現場配合（示方配合のコンクリートになるようにに現場において、細骨材と粗骨材の粒度及び表面水の影響で調整を行った配合）がありますが、コンクリート標準示方書では、単位量（コンクリート1m³製造する
時に必要な材料の量）によって配合を表すことにしてい
ます。

1）配合設計の手順

配合設計に先立ち、使用材料は基準試験によってセメントと骨材の比重、骨材の粒度、含水量、単位容積質等を求めます。

①配合強度の計算

コンクリートの配合設計を行う場合に目標とする配合強度σcはコンクリート版の設計基準曲げ強度σck（一般には45kgf/cm²、特例でL・A交通で40kgf/cm²）をP倍に割り増したものとします。セメントコンクリート舗装要綱ではPは、JIS A 5308のレデミックスコンクリートを除き1.15の値をとることにしています。これは、コンクリートの品質の均一化を図るために曲げ強度の試験値（X₃）が設計基準強度σckを1/5以上の確率で下まわらないこと、及び0.8 σckを1/30以上の確率で下まわらないという2つの条件を満足するように過去の実績からくる変動係数16
%を見込めば十分であるということから、これに対応した値にしています。（表1-1参照）

一方、JIS A 5308レデミックスコンクリートに規定されているコンクリートの曲げ強度は、3回の
試験結果の平均値が購入者が指定した呼び強度以上であること、及びどの回の試験結果も呼び強度の85
%以上でなければならないという2つの条件から決
められているが、この2つの条件を満足する割り増
し係数Pの値は表1-1のJISの値であります。これ
によれば、レデミックスコンクリート工場における
品質の変動係数が10%未満であれば、設計基準曲
げ強度の値を呼び強度として用い、JIS 規定の割り増
し係数を用いていれば舗装用コンクリートでP=1.15
を用いている配合強度とほぼ近似した値になるといえます。曲げ強度試験はJIS A 1106に準じておこな
います。

②水セメント比の選定

水セメント比は、所要の強度と耐久性を考慮して
決める必要があり、舗装用コンクリートでは気象条件が厳しい結晶融解がくり返されるような環境条件
では45%以下、結晶融解がときどき起こる場合は50
%以下の範囲で決めます。

③粗骨材の最大寸法、スランプの決定

粗骨材の最大寸法は40mm以下、スランプは2.5cm（ただし、振動台式コンクリント試験装置を用いる
場合も沈下度は30秒）、空気量は4.0%を標準として
いるのでこれらを考慮して決めます。スランプ試験
はJIS A 1101、空気量試験はJIS A 1128に準じて
行います。

④単位水量、単位セメント量

舗装用コンクリートは、体質変化が小さくすりへ
り抵抗の大きい性能が要求されるので、舗装作業ができる範囲で、できるだけコンクリートの小さいものである必要があります。このため単位水量は骨材の粒度、形状、単位粗骨材容積、混和剤の種類、コンクリートの温度、運搬時間等を考慮して試験によって決ます。

単位セメント量は単位水量とセメント比から求められ、舗装用には280〜350kgの範囲で決めます。

⑤単位粗骨材容積

単位粗骨材容積は所要のワーカビリティならびにフィッシャビリティが得られる範囲内で単位量が最小となるように決めます。通常は表-2の配合表を参考に決めます。

混和材料を使用する場合は、既往の資料等を参考にその単位量を決めます。

⑥試験練り

計算によった求めた各単位量をもとに、可傾式ミキサ等を用いて試験練りを行いスランプ、空気圧を測定し、所定の値になるように表-2の(注2)〜(注5)を参考に調整しながら示方配合を決めます。特にコンクリートの運搬距離、運搬方法、舗装時期、時間等によって生じるスランププロとエアロースを含めた示方配合を決めることが重要であります。

⑦現場配合

示方配合を現場の条件（主として骨材の表乾状態等）を考慮して現場配合を決めます。この場合は、表面乾燥状態をもとに配合をプランクの使用骨材の表面水圧による補正、混和剤の使用による水量の補正、粗骨材・細骨材の粒度別（5mm以下の粒径、20〜40mm）の補正によって現場配合を決めることが重要であります。

日本セメント協会で実施した共同試験による各単位量の例を示すと図-1のようになります。

[小島逸平 熊谷道路院技術研究所]

表-2 配合参考表（セメントコンクリート舗装用）

<table>
<thead>
<tr>
<th>粗骨材の最大寸法</th>
<th>砂利コンクリート</th>
<th>砂利コンクリート</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>単位粗骨材容積</td>
<td>単位水量kg</td>
</tr>
<tr>
<td>40</td>
<td>0.76</td>
<td>115</td>
</tr>
<tr>
<td>30</td>
<td></td>
<td>120</td>
</tr>
<tr>
<td>25(30)</td>
<td></td>
<td>125</td>
</tr>
</tbody>
</table>

（注1）砂利に砕石が混入している場合の単位水量及び単位粗骨材容積は、上記の表の値が直接的に変化するものとして求める。
（注2）単位水量と沈下度の関係は1kg（沈下度）=1単位水量が直線的関係にあるため、沈下度10秒に相当する単位水量の変化は、沈下度30秒程度の場合は2.5kg、沈下度50秒程度の場合は1.5kg、沈下度60秒程度の場合は1kgである。
（注3）スランプ6.5cmの場合の単位水量は上記の値より8kg増加する。
（注4）単位水量とスランプとの関係は、スランプ1cmに相当する単位水量の変化は、スランプ3cm程度の場合は1.5kg、スランプ5cm程度の場合は2kg、スランプ7cm程度の場合は4kg、スランプ1cm程度の場合は7kgである。
（注5）粗骨材の粗粒率の増減に伴う単位粗骨材容積の補正は、細骨材の粗粒率が2.2〜3.3の範囲にある場合に適用される式を示した。
(1) $\sigma_b = 52 \text{kgf/cm}^2$の配合分布（粗骨材の最大寸法40mm，スランプ2.5cmの場合）

\[
\begin{align*}
\text{水セメント比(％)} & : \\
36.0 & - 40.0 & - 45.0 & - 50.0 & - 55.0 & - 60.0 & - 65.0 & - 70.0 \\
\text{単位セメント量(kg/m}^3) & : \\
250 & - 300 & - 350 & - 400 & - 450 & - 500 & - 550 & - 600 \\
\text{単位水質(kg/m}^3) & : \\
120 & - 150 & - 180 & - 210 & - 240 & - 270 & - 300 & - 330 \\
\end{align*}
\]

$n = 57$

$\bar{x} = 45.5$

$\sigma = 4.2$

$X_{\text{max}} = 54.4$

$X_{\text{min}} = 37.4$

$n = 57$

$\bar{x} = 310.1$

$\sigma = 26.6$

$X_{\text{max}} = 395.0$

$X_{\text{min}} = 247.0$

$n = 57$

$\bar{x} = 140.0$

$\sigma = 7.6$

$X_{\text{max}} = 153.0$

$X_{\text{min}} = 124.0$

図－1 品質実態の例（セメント協会）
引張／圧縮／曲げ試験（アスファルト混合物の）

アスファルト混合物の機械的性質（または力学的性質）を測定する手段としては、その外力の大きさ方から静的試験、衝撃試験、クリープ試験、疲労試験の4種類に大別される。静的試験は一般に供試体が変形する速度を一定（これを定変位速度、定変位速度あるいは定制御などという）にして、供試体が破壊するまで一定方向に力を加えていく試験のことを指す。一回荷重試験と呼ばれることも多いが、これは外力が繰返し加かれる疲労試験に対応して使われる言葉である。ここで述べる引張／圧縮／曲げ試験は、一回荷重試験の中の特に静的試験における代表的な試験項目である。アスファルト混合物の力学的性質は、温度、変位速度（載荷時間）によって著しく変化することが、これへの研究を難しくさせ、引張／圧縮／曲げ試験においては完成された方法（公的試験規格）はまだ存在しない。したがってさまざまな形状、大きさの供試体や載荷装置がこれまでに用いられている。このうち曲げ試験が最も広く実施されており、圧縮試験がこれに次ぎ、あつかいの面倒な引張試験はあまり実施されていない。共通原則としては、室内で転圧あるいは現場で締固められた混合物を、水を冷却し、潤滑剤として、カッターあるいはコア採取機等で一定の形状に切断形状として、戴荷試験機（普通、圧縮試験機とよばれるもの）により、一定温度の空中あるいは液浴中で試験を実施するものである。以下実例によって引張／圧縮／曲げの3試験を説明する。あわせて図-1を参照された。

引張試験

応力、歪を正しく求めるためには供試体の断面形状が供試体全長にわたって一致（断面積一定）であることが必要である。供試体の一部として3×3×10cmの直方体が用いられる。これらの両端をステンレス鋼製の治具（3×3×3cm、ピン穴つき）にエポキシ樹脂で接着する。引張試験は特にこの両端部に応力が集中している間測定方法を生じやすいので、ユニバーサルジョイントの構造にして供試体を正確に長さ方向に引張ってやる注意が必要である。厳密に言うと供試体は
圧縮試験

供試体寸法は一例として引張試験の場合と同じく，3 x 3 x 10cm のものである。供試体の横方向へのすべりを防ぐためステンレス鋼製具（3 x 3 x 3 cm，ピン穴不要）にエボキシ樹脂で接着し、この治具をしっかりと固定して圧縮する。この試験は低温、高速で行なう場合に、短時間で大きな応力が発生し、しばしば試験機の能力以上の荷重がかかりので注意が必要である。したがって供試体寸法をあまり大きくせず、温度は常温から高温域で実施することが好ましい。

曲げ試験

一例として供試体寸法は長さ23cm、高さ3cm、幅4cmで、これを支持間隔20cmで中央部を載荷するいわゆる3点曲げ試験がある。この試験は弾性解により供試体下部中央部における長さ方向の応力と歪をもとめる。したがって引張応力、曲げ歪は厳密には（曲げ破断時の）引張応力、引張歪である。曲げ試験は、高温で行う場合、供試体がアスコンであってもセットした時点でたわみ始めることがあり、クリープがほとんど進行するので変位速度を遅くすることはむしろ好ましくない。したがって常温以下の低温域までで、比較的速い速度で曲げてやることが重要である。

なお載荷部分の機構が複雑な場合、これら金属部分の変形が供試体の変形に加算されて記録されてしまうことがある。そこで使用する荷重範囲ではほとんど変形しないような金属製非構造供試体（金属ダミー）を別途用意し、これで予め載荷実験を行なっておいて金属載荷部分の変形曲線を求めておくことも必要であろう。

応力、歪、スフィンクス

<table>
<thead>
<tr>
<th>σ</th>
<th>ε</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>小</td>
<td>大</td>
<td></td>
</tr>
<tr>
<td>多</td>
<td>小</td>
<td></td>
</tr>
<tr>
<td>高</td>
<td>低</td>
<td></td>
</tr>
</tbody>
</table>

图-2 破壊時応力と温度との関係（一例）

图-3 同一混合物におけるσ, ε, Sと温度Tの一般関係
つ山形の曲線で、高温から低温に移行するにつれ、流動的破壊から脆性の破壊へと破壊のモードが変化するこのピーク時温度を著原は融点化点（Transition Point）と名づけている。$\epsilon - T$ はゆるやかな S 字型のカーブで、左下は $2 \sim 5 \times 10^{-2}$、右下で $1 \sim 2 \times 10^{-3}$ あるいは $6 \sim 7 \times 10^{-4}$ が報告されている。$S - T$ は右下の片流れ曲線で示され、低恒 - 高速域では一定値に収束するようであるが、その値は他の文献から $2 \sim 4 \times 10^5 \text{kg/cm}^2$ と推定される$^9)$. これら $\sigma - T$, $\epsilon - T$, $S - T$ 曲線は歪速度、アスファルト量、アスファルト針入度（PI 定定）の大小によって温度軸に対して整然と平行移動する。ただし針入度を一定にして PI をさまざまな変化させたアスファルトを使用した場合には図-4 のような関係がみられる$^6)$. PI の高いアスファルトほど融点化点は低温域に位置し（すなわち延性破壊の温度域が広い）、高温域での応力は大きく、逆に PI は小さい。すなわち同一針入度ならば PI の高いアスファルトほど実用上のメリットが大きくことを示している。また図-4の関係も歪速度や、アスファルト針入度によって左右に平行移動することももちろんであって、歪速度を 10 倍（載荷時間で約 1/10）にすると温度約 5℃でだけ高温域へ平行移動し、PI 定定で針入度を 1 グレード（約 20）低下させても同じような傾向を示すと報告している$^6)$. [著原正明、昭和シェル石油㈱（中央研究所）]

図-4 PI の変化が σ, ϵ, S に与える影響（同一針入度、同一混合物、定歪速度）

------ 参考文献 -----

1）著原、インストロン万能試験機とその利用、アスファルト誌、Na83, P14～16 （1972）
2）Murayama et al, Low temperature brittleness of asphalts, Bull of Japan Petro. Inst.1－61 P63 （1959）
3）著原、工藤、有福；土木材料Ⅲ（アスファルト）P104，その他多数 （1974）
4）著原、島川、牛尾、アスファルトの PI 値が混合物の力学性状に与える影響、第12回日本道路會議論文集、P241～242 （1975）
5）van der Poel, Building Materials (edited by Reiner) P395 （1954）

Vol. 33 No. 166 (1991年) 69
<table>
<thead>
<tr>
<th>年度</th>
<th>内需</th>
<th>燃焼用</th>
<th>プローン</th>
<th>合計</th>
<th>対前年度比</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ストレート・アスファルト</td>
<td>道路用</td>
<td>工業用</td>
<td>種類</td>
<td>合計</td>
</tr>
<tr>
<td>53年度</td>
<td>4,659</td>
<td>264</td>
<td>4,903</td>
<td>314</td>
<td>5,217</td>
</tr>
<tr>
<td>54年度</td>
<td>4,617</td>
<td>177</td>
<td>4,794</td>
<td>343</td>
<td>5,137</td>
</tr>
<tr>
<td>55年度</td>
<td>4,233</td>
<td>183</td>
<td>4,416</td>
<td>287</td>
<td>4,703</td>
</tr>
<tr>
<td>56年度</td>
<td>4,082</td>
<td>202</td>
<td>4,284</td>
<td>424</td>
<td>4,562</td>
</tr>
<tr>
<td>57年度</td>
<td>3,943</td>
<td>185</td>
<td>4,128</td>
<td>187</td>
<td>4,575</td>
</tr>
<tr>
<td>58年度</td>
<td>3,950</td>
<td>177</td>
<td>4,127</td>
<td>540</td>
<td>4,921</td>
</tr>
<tr>
<td>59年度上期</td>
<td>1,915</td>
<td>79</td>
<td>1,994</td>
<td>403</td>
<td>2,516</td>
</tr>
<tr>
<td>59年度下期</td>
<td>2,084</td>
<td>83</td>
<td>2,167</td>
<td>403</td>
<td>2,705</td>
</tr>
<tr>
<td>60年度</td>
<td>3,999</td>
<td>162</td>
<td>4,161</td>
<td>806</td>
<td>5,221</td>
</tr>
<tr>
<td>60年度上期</td>
<td>1,766</td>
<td>72</td>
<td>1,838</td>
<td>389</td>
<td>2,339</td>
</tr>
<tr>
<td>60年度下期</td>
<td>1,973</td>
<td>67</td>
<td>2,040</td>
<td>522</td>
<td>2,696</td>
</tr>
<tr>
<td>60年度</td>
<td>3,739</td>
<td>139</td>
<td>3,878</td>
<td>911</td>
<td>5,035</td>
</tr>
<tr>
<td>61年度上期</td>
<td>1,825</td>
<td>66</td>
<td>1,891</td>
<td>565</td>
<td>2,568</td>
</tr>
<tr>
<td>61年度下期</td>
<td>2,155</td>
<td>72</td>
<td>2,227</td>
<td>673</td>
<td>2,928</td>
</tr>
<tr>
<td>61年度</td>
<td>3,980</td>
<td>241</td>
<td>4,221</td>
<td>1,238</td>
<td>5,596</td>
</tr>
<tr>
<td>62年度</td>
<td>1,949</td>
<td>98</td>
<td>2,047</td>
<td>520</td>
<td>2,681</td>
</tr>
<tr>
<td>62年度上期</td>
<td>2,304</td>
<td>261</td>
<td>2,565</td>
<td>475</td>
<td>3,181</td>
</tr>
<tr>
<td>62年度下期</td>
<td>4,253</td>
<td>359</td>
<td>4,612</td>
<td>995</td>
<td>5,682</td>
</tr>
<tr>
<td>63年度上期</td>
<td>1,987</td>
<td>166</td>
<td>2,153</td>
<td>464</td>
<td>2,734</td>
</tr>
<tr>
<td>63年度下期</td>
<td>2,319</td>
<td>255</td>
<td>2,574</td>
<td>504</td>
<td>3,219</td>
</tr>
<tr>
<td>63年度</td>
<td>4,306</td>
<td>421</td>
<td>4,727</td>
<td>968</td>
<td>5,953</td>
</tr>
<tr>
<td>7～9月</td>
<td>380</td>
<td>47</td>
<td>427</td>
<td>71</td>
<td>517</td>
</tr>
<tr>
<td>10月</td>
<td>338</td>
<td>47</td>
<td>385</td>
<td>79</td>
<td>483</td>
</tr>
<tr>
<td>11月</td>
<td>352</td>
<td>33</td>
<td>385</td>
<td>81</td>
<td>487</td>
</tr>
<tr>
<td>7～9月</td>
<td>1,070</td>
<td>127</td>
<td>1,197</td>
<td>231</td>
<td>1,487</td>
</tr>
<tr>
<td>元年度上期</td>
<td>2,043</td>
<td>151</td>
<td>2,194</td>
<td>424</td>
<td>2,733</td>
</tr>
<tr>
<td>10月</td>
<td>420</td>
<td>11</td>
<td>431</td>
<td>85</td>
<td>514</td>
</tr>
<tr>
<td>11月</td>
<td>427</td>
<td>78</td>
<td>505</td>
<td>83</td>
<td>612</td>
</tr>
<tr>
<td>12月</td>
<td>440</td>
<td>63</td>
<td>503</td>
<td>87</td>
<td>614</td>
</tr>
<tr>
<td>10～12月</td>
<td>1,287</td>
<td>152</td>
<td>1,439</td>
<td>255</td>
<td>1,767</td>
</tr>
<tr>
<td>1月</td>
<td>189</td>
<td>59</td>
<td>248</td>
<td>84</td>
<td>352</td>
</tr>
<tr>
<td>2月</td>
<td>266</td>
<td>51</td>
<td>317</td>
<td>78</td>
<td>416</td>
</tr>
<tr>
<td>3月</td>
<td>575</td>
<td>33</td>
<td>608</td>
<td>93</td>
<td>724</td>
</tr>
<tr>
<td>1～3月</td>
<td>1,030</td>
<td>143</td>
<td>1,173</td>
<td>255</td>
<td>1,492</td>
</tr>
<tr>
<td>元年度下期</td>
<td>2,317</td>
<td>295</td>
<td>2,612</td>
<td>510</td>
<td>3,259</td>
</tr>
<tr>
<td>元年度</td>
<td>4,300</td>
<td>446</td>
<td>4,806</td>
<td>934</td>
<td>5,992</td>
</tr>
<tr>
<td>二月</td>
<td>417</td>
<td>9</td>
<td>426</td>
<td>79</td>
<td>525</td>
</tr>
<tr>
<td>5月</td>
<td>326</td>
<td>58</td>
<td>384</td>
<td>64</td>
<td>488</td>
</tr>
<tr>
<td>6月</td>
<td>343</td>
<td>49</td>
<td>392</td>
<td>60</td>
<td>473</td>
</tr>
<tr>
<td>4～6月</td>
<td>1,086</td>
<td>116</td>
<td>1,202</td>
<td>203</td>
<td>1,466</td>
</tr>
<tr>
<td>7月</td>
<td>390</td>
<td>57</td>
<td>447</td>
<td>66</td>
<td>534</td>
</tr>
<tr>
<td>8月</td>
<td>336</td>
<td>49</td>
<td>385</td>
<td>79</td>
<td>483</td>
</tr>
</tbody>
</table>

（注）(1) 通産省エネルギー統計月報2年8月発行
(2) 工業用ストレート・アスファルト、燃焼用アスファルト、プローンアスファルトは日本アスファルト協会調べ。
(3) 燃焼用ストレート・アスファルト＝内需量合計（プローンアスファルト＋燃焼用アスファルト）
(4) 四捨五入のため月報と一致しない場合がある。

ASPHALT
石油アスファルト需要実績（品種別明細）
(単位：千t)

<table>
<thead>
<tr>
<th>年度</th>
<th>供給</th>
<th>給</th>
<th>需要</th>
<th>輸入</th>
<th>合計</th>
<th>小計</th>
<th>期末在庫</th>
<th>合計</th>
</tr>
</thead>
<tbody>
<tr>
<td>53年度</td>
<td>287</td>
<td>5,229</td>
<td>(109.2)</td>
<td>0</td>
<td>5,516</td>
<td>5,217</td>
<td>(109.5)</td>
<td>0</td>
</tr>
<tr>
<td>54年度</td>
<td>297</td>
<td>5,064</td>
<td>(96.8)</td>
<td>1</td>
<td>5,362</td>
<td>5,137</td>
<td>(98.5)</td>
<td>2</td>
</tr>
<tr>
<td>55年度</td>
<td>236</td>
<td>4,729</td>
<td>(93.2)</td>
<td>1</td>
<td>4,957</td>
<td>4,703</td>
<td>(91.6)</td>
<td>21</td>
</tr>
<tr>
<td>56年度</td>
<td>240</td>
<td>4,598</td>
<td>(97.4)</td>
<td>0</td>
<td>4,838</td>
<td>4,562</td>
<td>(97.0)</td>
<td>19</td>
</tr>
<tr>
<td>57年度</td>
<td>226</td>
<td>4,624</td>
<td>(99.2)</td>
<td>0</td>
<td>4,850</td>
<td>4,575</td>
<td>(100.3)</td>
<td>18</td>
</tr>
<tr>
<td>58年度</td>
<td>213</td>
<td>4,947</td>
<td>(108.4)</td>
<td>0</td>
<td>5,160</td>
<td>4,921</td>
<td>(107.6)</td>
<td>4</td>
</tr>
<tr>
<td>59年度上期</td>
<td>226</td>
<td>2,541</td>
<td>(106.4)</td>
<td>0</td>
<td>2,767</td>
<td>2,516</td>
<td>(106.7)</td>
<td>0</td>
</tr>
<tr>
<td>59年度下期</td>
<td>252</td>
<td>2,694</td>
<td>(105.4)</td>
<td>0</td>
<td>2,946</td>
<td>2,705</td>
<td>(105.5)</td>
<td>0</td>
</tr>
<tr>
<td>59年度</td>
<td>226</td>
<td>5,235</td>
<td>(105.9)</td>
<td>0</td>
<td>5,461</td>
<td>5,221</td>
<td>(106.1)</td>
<td>0</td>
</tr>
<tr>
<td>60年度上期</td>
<td>240</td>
<td>2,400</td>
<td>(94.5)</td>
<td>0</td>
<td>2,640</td>
<td>2,339</td>
<td>(93.0)</td>
<td>0</td>
</tr>
<tr>
<td>60年度下期</td>
<td>294</td>
<td>2,629</td>
<td>(97.6)</td>
<td>0</td>
<td>2,923</td>
<td>2,696</td>
<td>(99.7)</td>
<td>0</td>
</tr>
<tr>
<td>60年度</td>
<td>240</td>
<td>5,029</td>
<td>(96.1)</td>
<td>0</td>
<td>5,269</td>
<td>5,035</td>
<td>(96.4)</td>
<td>0</td>
</tr>
<tr>
<td>61年度上期</td>
<td>215</td>
<td>2,656</td>
<td>(110.7)</td>
<td>0</td>
<td>3,130</td>
<td>2,568</td>
<td>(109.8)</td>
<td>0</td>
</tr>
<tr>
<td>61年度下期</td>
<td>291</td>
<td>3,089</td>
<td>(117.5)</td>
<td>0</td>
<td>3,380</td>
<td>3,128</td>
<td>(116.0)</td>
<td>0</td>
</tr>
<tr>
<td>61年度</td>
<td>215</td>
<td>5,744</td>
<td>(114.2)</td>
<td>0</td>
<td>5,959</td>
<td>5,696</td>
<td>(113.1)</td>
<td>0</td>
</tr>
<tr>
<td>62年度上期</td>
<td>235</td>
<td>2,745</td>
<td>(103.4)</td>
<td>7</td>
<td>2,987</td>
<td>2,681</td>
<td>(104.4)</td>
<td>0</td>
</tr>
<tr>
<td>62年度下期</td>
<td>312</td>
<td>3,146</td>
<td>(101.8)</td>
<td>2</td>
<td>3,460</td>
<td>3,181</td>
<td>(101.7)</td>
<td>0</td>
</tr>
<tr>
<td>62年度</td>
<td>235</td>
<td>5,892</td>
<td>(102.6)</td>
<td>9</td>
<td>6,136</td>
<td>5,862</td>
<td>(102.9)</td>
<td>0</td>
</tr>
<tr>
<td>63年度上期</td>
<td>274</td>
<td>2,754</td>
<td>(100.3)</td>
<td>3</td>
<td>3,031</td>
<td>2,734</td>
<td>(102.0)</td>
<td>0</td>
</tr>
<tr>
<td>63年度下期</td>
<td>287</td>
<td>3,150</td>
<td>(100.1)</td>
<td>0</td>
<td>3,437</td>
<td>3,219</td>
<td>(101.2)</td>
<td>0</td>
</tr>
<tr>
<td>63年度</td>
<td>274</td>
<td>5,904</td>
<td>(100.2)</td>
<td>0</td>
<td>6,178</td>
<td>5,953</td>
<td>(101.6)</td>
<td>0</td>
</tr>
<tr>
<td>1.7月</td>
<td>331</td>
<td>517</td>
<td>(108.2)</td>
<td>0</td>
<td>848</td>
<td>517</td>
<td>(109.1)</td>
<td>0</td>
</tr>
<tr>
<td>8月</td>
<td>330</td>
<td>497</td>
<td>(99.0)</td>
<td>0</td>
<td>827</td>
<td>483</td>
<td>(97.8)</td>
<td>0</td>
</tr>
<tr>
<td>9月</td>
<td>342</td>
<td>518</td>
<td>(113.1)</td>
<td>0</td>
<td>860</td>
<td>487</td>
<td>(102.5)</td>
<td>0</td>
</tr>
<tr>
<td>7～9月</td>
<td>331</td>
<td>1,532</td>
<td>(106.5)</td>
<td>0</td>
<td>1,863</td>
<td>1,487</td>
<td>(103.0)</td>
<td>0</td>
</tr>
<tr>
<td>元年度上期</td>
<td>219</td>
<td>2,895</td>
<td>(105.1)</td>
<td>0</td>
<td>3,114</td>
<td>2,733</td>
<td>(100.0)</td>
<td>0</td>
</tr>
<tr>
<td>10月</td>
<td>372</td>
<td>518</td>
<td>(95.0)</td>
<td>0</td>
<td>890</td>
<td>541</td>
<td>(96.3)</td>
<td>0</td>
</tr>
<tr>
<td>11月</td>
<td>349</td>
<td>621</td>
<td>(106.5)</td>
<td>0</td>
<td>970</td>
<td>612</td>
<td>(107.9)</td>
<td>0</td>
</tr>
<tr>
<td>12月</td>
<td>357</td>
<td>574</td>
<td>(104.4)</td>
<td>0</td>
<td>931</td>
<td>614</td>
<td>(105.9)</td>
<td>0</td>
</tr>
<tr>
<td>10～12月</td>
<td>372</td>
<td>2,714</td>
<td>(102.1)</td>
<td>0</td>
<td>2,086</td>
<td>1,767</td>
<td>(103.5)</td>
<td>0</td>
</tr>
<tr>
<td>2.1月</td>
<td>317</td>
<td>368</td>
<td>(100.8)</td>
<td>0</td>
<td>685</td>
<td>352</td>
<td>(103.8)</td>
<td>0</td>
</tr>
<tr>
<td>2月</td>
<td>332</td>
<td>408</td>
<td>(90.1)</td>
<td>0</td>
<td>740</td>
<td>416</td>
<td>(94.8)</td>
<td>0</td>
</tr>
<tr>
<td>3月</td>
<td>322</td>
<td>681</td>
<td>(104.1)</td>
<td>0</td>
<td>1,003</td>
<td>724</td>
<td>(98.8)</td>
<td>3</td>
</tr>
<tr>
<td>1～3月</td>
<td>317</td>
<td>1,457</td>
<td>(99.0)</td>
<td>0</td>
<td>1,774</td>
<td>1,492</td>
<td>(98.7)</td>
<td>3</td>
</tr>
<tr>
<td>元年度下期</td>
<td>322</td>
<td>3,170</td>
<td>(100.6)</td>
<td>0</td>
<td>3,542</td>
<td>3,259</td>
<td>(101.2)</td>
<td>3</td>
</tr>
<tr>
<td>元年度</td>
<td>219</td>
<td>6,066</td>
<td>(102.7)</td>
<td>0</td>
<td>6,285</td>
<td>5,992</td>
<td>(100.7)</td>
<td>3</td>
</tr>
<tr>
<td>2.4月</td>
<td>276</td>
<td>581</td>
<td>(99.7)</td>
<td>0</td>
<td>857</td>
<td>525</td>
<td>(106.5)</td>
<td>0</td>
</tr>
<tr>
<td>5月</td>
<td>330</td>
<td>429</td>
<td>(111.4)</td>
<td>0</td>
<td>759</td>
<td>468</td>
<td>(133.7)</td>
<td>0</td>
</tr>
<tr>
<td>6月</td>
<td>267</td>
<td>457</td>
<td>(115.4)</td>
<td>0</td>
<td>744</td>
<td>473</td>
<td>(117.4)</td>
<td>0</td>
</tr>
<tr>
<td>4～6月</td>
<td>276</td>
<td>1,467</td>
<td>(107.6)</td>
<td>0</td>
<td>1,743</td>
<td>1,466</td>
<td>(117.7)</td>
<td>0</td>
</tr>
<tr>
<td>7月</td>
<td>267</td>
<td>538</td>
<td>(104.1)</td>
<td>0</td>
<td>805</td>
<td>534</td>
<td>(103.3)</td>
<td>0</td>
</tr>
<tr>
<td>8月</td>
<td>271</td>
<td>548</td>
<td>(110.3)</td>
<td>0</td>
<td>819</td>
<td>483</td>
<td>(100.0)</td>
<td>0</td>
</tr>
</tbody>
</table>

(注) (1) 通産省エネルギー生産・需要統計月報2年8月確報
(2) 四捨五入のため月報と一致しない場合がある。

Vol. 33 No. 166 (1991年)
<table>
<thead>
<tr>
<th>社名</th>
<th>住所</th>
<th>電話</th>
</tr>
</thead>
<tbody>
<tr>
<td>出光興産株式会社</td>
<td>千代田区丸の内3-1-1</td>
<td>03(3213)3134</td>
</tr>
<tr>
<td>エッソ石油株式会社</td>
<td>港区赤坂5-3-3</td>
<td>03(3585)9438</td>
</tr>
<tr>
<td>鹿島石油株式会社</td>
<td>千代田区紀尾井町3-6</td>
<td>03(3265)0411</td>
</tr>
<tr>
<td>キグナス石油株式会社</td>
<td>中央区京橋2-9-2</td>
<td>03(3535)7811</td>
</tr>
<tr>
<td>キグナス石油精製株式会社</td>
<td>川崎市川崎区浮島町3-1</td>
<td>044(266)8311</td>
</tr>
<tr>
<td>九州石油株式会社</td>
<td>千代田区内幸町2-1-1</td>
<td>03(3502)3651</td>
</tr>
<tr>
<td>共同石油株式会社</td>
<td>港区虎ノ門2-10-1</td>
<td>03(3224)6298</td>
</tr>
<tr>
<td>極東石油工業株式会社</td>
<td>千代田区大手町1-7-2</td>
<td>03(3270)0841</td>
</tr>
<tr>
<td>興亜石油株式会社</td>
<td>千代田区大手町2-6-2</td>
<td>03(3241)8631</td>
</tr>
<tr>
<td>コスモ石油株式会社</td>
<td>芝浦1-1-1</td>
<td>03(3798)3200</td>
</tr>
<tr>
<td>三共油化工業株式会社</td>
<td>千代田区丸の内1-4-2</td>
<td>03(3284)1911</td>
</tr>
<tr>
<td>昭和シェル石油株式会社</td>
<td>千代田区霞が関3-2-5</td>
<td>03(3503)4076</td>
</tr>
<tr>
<td>昭和四日市石油株式会社</td>
<td>四日市市塩浜町1</td>
<td>0593(45)2111</td>
</tr>
<tr>
<td>西部石油株式会社</td>
<td>千代田区丸の内1-2-1</td>
<td>03(3215)3081</td>
</tr>
<tr>
<td>ゼネラル石油株式会社</td>
<td>西新橋2-8-6</td>
<td>03(3595)8300</td>
</tr>
<tr>
<td>東燃株式会社</td>
<td>千代田区一ツ橋1-1-1</td>
<td>03(3286)5111</td>
</tr>
<tr>
<td>東北石油株式会社</td>
<td>仙台市港5-1-1</td>
<td>022(363)1111</td>
</tr>
<tr>
<td>日本鉱業株式会社</td>
<td>虎ノ門2-10-1</td>
<td>03(3505)8530</td>
</tr>
<tr>
<td>日本石油株式会社</td>
<td>西新橋1-3-12</td>
<td>03(3502)1111</td>
</tr>
<tr>
<td>日本石油精製株式会社</td>
<td>西新橋1-3-12</td>
<td>03(3502)1111</td>
</tr>
<tr>
<td>富士興産株式会社</td>
<td>千代田区永田町2-4-3</td>
<td>03(3580)3571</td>
</tr>
<tr>
<td>富士石油株式会社</td>
<td>千代田区大手町1-2-3</td>
<td>03(3211)6531</td>
</tr>
<tr>
<td>三菱石油株式会社</td>
<td>虎ノ門1-2-4</td>
<td>03(3595)7413</td>
</tr>
<tr>
<td>モービル石油株式会社</td>
<td>千代田区大手町1-7-2</td>
<td>03(3244)4691</td>
</tr>
</tbody>
</table>

[ディーラー]

<table>
<thead>
<tr>
<th>社名</th>
<th>住所</th>
<th>電話</th>
</tr>
</thead>
<tbody>
<tr>
<td>コスモアスファルト㈱札幌支店</td>
<td>札幌市中央区大通西10-4</td>
<td>011(281)3906コスモ</td>
</tr>
<tr>
<td>高井石油株式会社</td>
<td>札幌市中央区南4条西11-1292-4</td>
<td>011(518)2771コスモ</td>
</tr>
<tr>
<td>株式会社トークス札幌営業所</td>
<td>札幌市中央区北2条西2</td>
<td>011(281)2361共石</td>
</tr>
<tr>
<td>東光商事株式会社札幌営業所</td>
<td>札幌市中央区大通西17</td>
<td>011(241)1561三石</td>
</tr>
<tr>
<td>中西瀬戸株式会社札幌営業所</td>
<td>札幌市中央区北2条西2</td>
<td>011(231)2895出光</td>
</tr>
<tr>
<td>株式会社南商商会札幌営業所</td>
<td>札幌市中央区北2条西2-15</td>
<td>011(231)7887出光</td>
</tr>
<tr>
<td>レキセイ商事株式会社</td>
<td>札幌市中央区北4条西3</td>
<td>011(231)4501出光</td>
</tr>
<tr>
<td>株式会社ロード資材</td>
<td>札幌市中央区北1条西10-1-11</td>
<td>011(281)3976コスモ</td>
</tr>
<tr>
<td>社名</td>
<td>住所</td>
<td>電話</td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>東北</td>
<td></td>
<td></td>
</tr>
<tr>
<td>有限会社 男鹿興業社</td>
<td>仙台市青葉区国分町3-1-18</td>
<td>022(264)6111</td>
</tr>
<tr>
<td>カメイ株式会社</td>
<td>仙台市青葉区中央2-1-17</td>
<td>022(222)9203</td>
</tr>
<tr>
<td>株式会社木田商会</td>
<td>仙台市青葉区中央2-1-33</td>
<td>022(266)1101</td>
</tr>
<tr>
<td>コスモアスファルト株式会社</td>
<td>仙台市青葉区国分町3-1-18</td>
<td>022(263)5951</td>
</tr>
<tr>
<td>正興産業株式会社</td>
<td>仙台市青葉区中央2-1-17</td>
<td>022(222)9203</td>
</tr>
<tr>
<td>竹中産業株式会社</td>
<td>仙台市青葉区中央2-1-17</td>
<td>022(222)9203</td>
</tr>
<tr>
<td>株式会社トーアス</td>
<td>仙台市青葉区国分町3-1-18</td>
<td>022(266)1101</td>
</tr>
<tr>
<td>常盤産業株式会社</td>
<td>仙台市青葉区中央2-1-17</td>
<td>022(222)9203</td>
</tr>
<tr>
<td>中西沥青株式会社</td>
<td>仙台市青葉区中央2-1-17</td>
<td>022(222)9203</td>
</tr>
<tr>
<td>株式会社南商商会</td>
<td>仙台市青葉区中央2-1-17</td>
<td>022(222)9203</td>
</tr>
<tr>
<td>ミヤセキ株式会社</td>
<td>仙台市青葉区中央2-1-17</td>
<td>022(222)9203</td>
</tr>
<tr>
<td>菱油販売株式会社</td>
<td>仙台市青葉区中央2-1-17</td>
<td>022(222)9203</td>
</tr>
<tr>
<td>関東</td>
<td></td>
<td></td>
</tr>
<tr>
<td>朝日産業株式会社</td>
<td>中央区日本橋茅場町2-7-9</td>
<td>03(3669)7878</td>
</tr>
<tr>
<td>アスファルト産業株式会社</td>
<td>中央区八重洲1-8-5</td>
<td>03(3553)3001</td>
</tr>
<tr>
<td>伊藤忠商事株式会社</td>
<td>中央区八重洲1-8-5</td>
<td>03(3497)6660</td>
</tr>
<tr>
<td>伊藤忠燃料株式会社</td>
<td>中央区八重洲1-8-5</td>
<td>03(3584)8555</td>
</tr>
<tr>
<td>梅本石油株式会社</td>
<td>中央区八重洲1-8-5</td>
<td>03(3269)7541</td>
</tr>
<tr>
<td>株式会社木田商会</td>
<td>中央区八重洲1-8-5</td>
<td>03(3552)3191</td>
</tr>
<tr>
<td>コスモアスファルト株式会社</td>
<td>中央区八重洲1-8-5</td>
<td>03(3551)8011</td>
</tr>
<tr>
<td>国光商事株式会社</td>
<td>中央区八重洲1-8-5</td>
<td>03(3363)8231</td>
</tr>
<tr>
<td>株式会社澤田商行関東支店</td>
<td>中央区八重洲1-8-5</td>
<td>03(3551)7131</td>
</tr>
<tr>
<td>三徳商事株式会社東京支店</td>
<td>中央区八重洲1-8-5</td>
<td>03(3254)9291</td>
</tr>
<tr>
<td>新日本商事株式会社</td>
<td>中央区八重洲1-8-5</td>
<td>03(3294)3961</td>
</tr>
<tr>
<td>住商石油アスファルト株式会社</td>
<td>中央区八重洲1-8-5</td>
<td>03(3578)9521</td>
</tr>
<tr>
<td>大洋商運株式会社</td>
<td>中央区八重洲1-8-5</td>
<td>03(3245)1621</td>
</tr>
<tr>
<td>竹中産業株式会社</td>
<td>中央区八重洲1-8-5</td>
<td>03(3251)0185</td>
</tr>
<tr>
<td>中央石油株式会社</td>
<td>新宿区宿新2-6-5</td>
<td>03(3356)8061</td>
</tr>
<tr>
<td>株式会社トーアス</td>
<td>新宿区宿新2-6-5</td>
<td>03(3342)6391</td>
</tr>
<tr>
<td>東京レジセイ株式会社</td>
<td>渋谷区恵比寿西1-9-12</td>
<td>03(3496)8689</td>
</tr>
<tr>
<td>東京富士興産販売株式会社</td>
<td>港区虎ノ門1-13-4</td>
<td>03(3591)3401</td>
</tr>
<tr>
<td>東光商事株式会社</td>
<td>中央区中央区2-1-17</td>
<td>03(3274)2751</td>
</tr>
<tr>
<td>東新沥青株式会社</td>
<td>中央区中央区2-1-17</td>
<td>03(3273)3551</td>
</tr>
<tr>
<td>東洋国際石油株式会社</td>
<td>中央区中央区2-1-17</td>
<td>03(3552)8151</td>
</tr>
<tr>
<td>東和産業株式会社</td>
<td>板橋区板橋2-29-11</td>
<td>03(3968)3101</td>
</tr>
<tr>
<td>中西沥青株式会社</td>
<td>中央区中央区2-1-17</td>
<td>03(3272)3471</td>
</tr>
<tr>
<td>株式会社南部商会</td>
<td>中央区中央区2-1-17</td>
<td>03(3213)5871</td>
</tr>
<tr>
<td>日石丸紅株式会社</td>
<td>中央区中央区2-1-17</td>
<td>03(3541)4015</td>
</tr>
<tr>
<td>日東商事株式会社</td>
<td>中央区中央区2-1-17</td>
<td>03(3915)7151</td>
</tr>
<tr>
<td>日東石油販売株式会社</td>
<td>中央区中央区2-1-17</td>
<td>03(3551)6101</td>
</tr>
<tr>
<td>パシフィック石油商事株式会社</td>
<td>中央区中央区2-1-17</td>
<td>03(3661)4951</td>
</tr>
<tr>
<td>富士興産アスファルト株式会社</td>
<td>中央区中央区2-1-17</td>
<td>03(3580)5211</td>
</tr>
<tr>
<td>富士鉱油株式会社</td>
<td>中央区中央区2-1-17</td>
<td>03(3432)2881</td>
</tr>
<tr>
<td>社名</td>
<td>住所</td>
<td>電話</td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>富士石油販売株式会社</td>
<td>中央区日本橋2-13-12</td>
<td>03 (3274) 2061 石井</td>
</tr>
<tr>
<td>富士油業株式会社東京支店</td>
<td>港区西麻布1-8-7</td>
<td>03 (3478) 3501 富士秀</td>
</tr>
<tr>
<td>丸紅エネルギー株式会社</td>
<td>千代田区神田錦町3-7-1</td>
<td>03 (3293) 4111 モービル</td>
</tr>
<tr>
<td>三井石油株式会社</td>
<td>千代田区神田畑町4-3</td>
<td>03 (3293) 71111 東石</td>
</tr>
<tr>
<td>三菱商事石油株式会社</td>
<td>千代田区丸の内2-6-2</td>
<td>03 (3210) 9702 三石</td>
</tr>
<tr>
<td>ユニ石油株式会社</td>
<td>千代田区神田東神宮町30</td>
<td>03 (3256) 3441 昭和シール</td>
</tr>
<tr>
<td>三菱商事株式会社</td>
<td>千代田区神田神宮町1-13-1</td>
<td>03 (5687) 1421 三石</td>
</tr>
<tr>
<td>三菱油販売株式会社</td>
<td>新宿区新宿1-20-2</td>
<td>03 (3345) 8205 三石</td>
</tr>
<tr>
<td>瀧野販売株式会社</td>
<td>中央区日本橋2-16-3</td>
<td>03 (3271) 7691 出光</td>
</tr>
</tbody>
</table>

中部

<table>
<thead>
<tr>
<th>社名</th>
<th>住所</th>
<th>電話</th>
</tr>
</thead>
<tbody>
<tr>
<td>コスモアスファルト株式会社 名古屋支店</td>
<td>名古屋市昭和区塩釜通4-9</td>
<td>052 (851) 1111 コスモ</td>
</tr>
<tr>
<td>株式会社 澤田商行</td>
<td>名古屋市中村区富川町1-1</td>
<td>052 (361) 7151 コスモ</td>
</tr>
<tr>
<td>三徳商事株式会社静岡支店</td>
<td>静岡市駅南松11-12</td>
<td>0542 (55) 2588 昭和シール</td>
</tr>
<tr>
<td>三徳商事株式会社 名古屋支店</td>
<td>名古屋市中村区附知野1-10-6</td>
<td>052 (452) 2781 昭和シール</td>
</tr>
<tr>
<td>株式会社 沼田商會</td>
<td>名古屋市中村区丸の内2-1-5</td>
<td>052 (231) 7721 コスモ</td>
</tr>
<tr>
<td>静岡鉄油株式会社</td>
<td>清水市栄町1575</td>
<td>0543 (66) 1195 モービル</td>
</tr>
<tr>
<td>新東亜运营商株式会社名古屋支店</td>
<td>名古屋市中村区名駅3-28-12</td>
<td>052 (561) 3514 富士興</td>
</tr>
<tr>
<td>竹中産業株式会社</td>
<td>福井市役所2-4-26</td>
<td>0766 (22) 1565 昭和シール</td>
</tr>
<tr>
<td>株式会社 田中石油店</td>
<td>福井市毛崎8-9-1</td>
<td>0776 (35) 1721 昭和シール</td>
</tr>
<tr>
<td>株式会社トーアス名古屋営業所</td>
<td>名古屋市中村区村名駅4-2-12</td>
<td>052 (481) 3588 石油</td>
</tr>
<tr>
<td>富安産業株式会社</td>
<td>富山市篠町2-121</td>
<td>0764 (29) 2298 昭和シール</td>
</tr>
<tr>
<td>中西瀧川株式会社名古屋営業所</td>
<td>名古屋市中村区錦町1-20-6</td>
<td>052 (211) 5011 日石</td>
</tr>
<tr>
<td>松村物産株式会社</td>
<td>金沢市広岡2-1-27</td>
<td>0762 (21) 6121 三石</td>
</tr>
<tr>
<td>丸福石油産業株式会社</td>
<td>高岡市美幸町2-1-28</td>
<td>0766 (22) 2860 昭和シール</td>
</tr>
<tr>
<td>三谷商事株式会社</td>
<td>福井市豊島1-3-1</td>
<td>0776 (20) 3134 モービル</td>
</tr>
</tbody>
</table>

近畿

<table>
<thead>
<tr>
<th>社名</th>
<th>住所</th>
<th>電話</th>
</tr>
</thead>
<tbody>
<tr>
<td>赤馬アスファルト工業株式会社</td>
<td>大阪市北区中津3-10-4</td>
<td>06 (374) 2271 モービル</td>
</tr>
<tr>
<td>飯野産業株式会社</td>
<td>神戸市北区難波通18</td>
<td>078 (333) 2810 石油</td>
</tr>
<tr>
<td>大阪アスファルト株式会社</td>
<td>大阪市北区中津11-11</td>
<td>06 (372) 0031 出光</td>
</tr>
<tr>
<td>木本通産株式会社大阪支店</td>
<td>大阪市北区西天満3-4-5</td>
<td>06 (364) 7212 コスモ</td>
</tr>
<tr>
<td>共和産業株式会社</td>
<td>神戸市垂水区2-10-4</td>
<td>0862 (33) 1500 石油</td>
</tr>
<tr>
<td>コスモアスファルト株式会社大阪支店</td>
<td>大阪市西区西本町2-5-28</td>
<td>06 (538) 2731 コスモ</td>
</tr>
<tr>
<td>コスモアスファルト株式会社広島支店</td>
<td>福岡市田中町5-9</td>
<td>0822 (44) 6262 コスモ</td>
</tr>
<tr>
<td>三徳商事株式会社</td>
<td>大阪市淀川区新高4-1-3</td>
<td>06 (394) 1551 昭和シール</td>
</tr>
<tr>
<td>昭和瀧青工業株式会社</td>
<td>姫路市北条町8-35</td>
<td>0792 (77) 5001 石油</td>
</tr>
<tr>
<td>信和興業株式会社</td>
<td>岡山市西松36-4</td>
<td>0862 (41) 3691 三石</td>
</tr>
<tr>
<td>スーパーストロングインターナショナル株式会社</td>
<td>大阪市淀川区西中島2-11-30</td>
<td>06 (303) 5510 昭和シール</td>
</tr>
<tr>
<td>正興産業株式会社</td>
<td>神戸市中央区海岸通り6</td>
<td>078 (322) 3301 石油</td>
</tr>
<tr>
<td>中国富士アスファルト株式会社</td>
<td>倉敷市児島神大宮の宮本町5-12</td>
<td>0864 (73) 3500 富士興</td>
</tr>
<tr>
<td>千代田瀧青株式会社</td>
<td>東北本町2-8-8</td>
<td>06 (358) 5531 三石</td>
</tr>
<tr>
<td>株式会社ナカムラ</td>
<td>姫路市北条町72</td>
<td>0792 (85) 2551 石油</td>
</tr>
<tr>
<td>中西瀧青株式会社</td>
<td>大阪市北区西天満3-11-17</td>
<td>06 (316) 3312 日石</td>
</tr>
<tr>
<td>平井商事株式会社</td>
<td>大阪市中央区東心塚横筋1-3-11</td>
<td>06 (252) 5856 富士興</td>
</tr>
</tbody>
</table>

ASPHALT
社団法人 日本アスファルト協会会員

<table>
<thead>
<tr>
<th>社名</th>
<th>住所</th>
<th>電話</th>
</tr>
</thead>
<tbody>
<tr>
<td>富士アスファルト販売株式会社</td>
<td>(550) 大阪市西区京町10-3-19</td>
<td>06 (441) 5 1 9 5 富士興</td>
</tr>
<tr>
<td>富士商株式会社</td>
<td>(756) 小野田市稲荷町6539</td>
<td>08368 (3) 3 2 1 0 昭和シール</td>
</tr>
<tr>
<td>平和石油株式会社</td>
<td>(530) 大阪市北区中之島3-6-32</td>
<td>06 (443) 2 7 7 1 昭和シール</td>
</tr>
<tr>
<td>株式会社松宮物産</td>
<td>(522) 愛知郡弥富町32</td>
<td>0749 (23) 1 6 0 8 昭和シール</td>
</tr>
<tr>
<td>丸和石油株式会社</td>
<td>(532) 大阪市淀川区塩本2-14-17</td>
<td>06 (301) 8 0 7 3 コスモ</td>
</tr>
<tr>
<td>横田瀧青興業株式会社</td>
<td>(672) 姫路市姫路南新町995</td>
<td>0792 (33) 0 5 5 5 共石</td>
</tr>
<tr>
<td>株式会社菱芳礦産</td>
<td>(671-11) 姫路市広田町西夢렇台7-140</td>
<td>0792 (39) 1 3 4 4 共石</td>
</tr>
</tbody>
</table>

- 四国・九州

<table>
<thead>
<tr>
<th>社名</th>
<th>住所</th>
<th>電話</th>
</tr>
</thead>
<tbody>
<tr>
<td>伊藤忠燃料株式会社</td>
<td>(812) 福岡市博多区博多駅前3-2-8</td>
<td>092 (471) 3 8 5 1 共石</td>
</tr>
<tr>
<td>今別産業株式会社</td>
<td>(890) 福岡市新栄町15-7</td>
<td>0922 (56) 4 1 1 1 共石</td>
</tr>
<tr>
<td>大分石油販売株式会社</td>
<td>(870) 大分市中央町1-1-3</td>
<td>0975 (34) 0 4 6 8 共石</td>
</tr>
<tr>
<td>株式会社カシジマ</td>
<td>(892) 福岡市住吉町1-3</td>
<td>0922 (24) 5 1 1 1 昭和シール</td>
</tr>
<tr>
<td>株式会社丸菱</td>
<td>(805) 北九州市八幡東区山王1-17-11</td>
<td>093 (661) 4 8 6 8 共石</td>
</tr>
<tr>
<td>コスモアスファルト株式会社</td>
<td>(810) 福岡市中央区島原1-3-52</td>
<td>092 (771) 7 4 3 6 コスモ</td>
</tr>
<tr>
<td>サンヨウ株式会社</td>
<td>(815) 福岡市南区今川町4-30</td>
<td>0922 (541) 7 6 1 5 富士興</td>
</tr>
<tr>
<td>三協商事株式会社</td>
<td>(770) 徳島市万代町5-8</td>
<td>0886 (53) 5 1 3 1 富士興</td>
</tr>
<tr>
<td>株式会社トーヒス高松営業所</td>
<td>(760) 高松市亀井町8-11</td>
<td>0878 (37) 1 6 4 5 共石</td>
</tr>
<tr>
<td>中西沥青株式会社</td>
<td>(810) 福岡市中央区天神4-1-18</td>
<td>0922 (771) 6 8 8 1 共石</td>
</tr>
<tr>
<td>株式会社南部商事福岡出張所</td>
<td>(810) 福岡市中央区天神3-4-8</td>
<td>0922 (721) 4 8 3 8 共石</td>
</tr>
<tr>
<td>西岡商事株式会社</td>
<td>(764) 仲多度郡多度津町家東3-1</td>
<td>0877 (33) 1 0 0 3 共石</td>
</tr>
<tr>
<td>煉石油株式会社</td>
<td>(804) 北九州市戸畑区牧山町1-40</td>
<td>093 (871) 3 6 2 5 コスモ</td>
</tr>
<tr>
<td>平和石油株式会社高松支店</td>
<td>(760) 高松市平田町5-6-26</td>
<td>0878 (31) 7 2 5 5 昭和シール</td>
</tr>
<tr>
<td>丸菱株式会社</td>
<td>(812) 福岡市博多区博多駅前4-3-22</td>
<td>0922 (431) 7 5 6 1 昭和シール</td>
</tr>
</tbody>
</table>

編集顧問

| 多田宏行 | 桜野三郎 |

編集委員

委員長：河野宏	副委員長：真柴和昌
阿部忠行	今井武志
荒井孝雄	藤野光
安崎裕	戸田透
飯島尚	小島良平
磯部政雄	野村敏明

アスファルト 第166号
平成3年1月発行
社団法人 日本アスファルト協会

Vol.34 No. 166 JANUARY 1991
Published by THE JAPAN ASPHALT ASSOCIATION

Vol. 33 No. 166 (1991年)